Search Results
You are looking at 1 - 10 of 15 items for
- Author or Editor: T. E. Bryan x
- Refine by Access: All Content x
During the Second Special Observing Period of May and June 1979, the Global Weather Experiment reached a peak. At this time the largest concentration of resources ever assembled was deployed to meet the challenge of observing the atmosphere and oceans to an unprecedented degree. This article outlines this effort and highlights the various observing systems involved in this effort—in particular the quantity of observations gathered from each major system.
During the Second Special Observing Period of May and June 1979, the Global Weather Experiment reached a peak. At this time the largest concentration of resources ever assembled was deployed to meet the challenge of observing the atmosphere and oceans to an unprecedented degree. This article outlines this effort and highlights the various observing systems involved in this effort—in particular the quantity of observations gathered from each major system.
Abstract
This study examines the possibility that supercell tornado forecasts could be improved by utilizing the storm-relative helicity (SRH) in the lowest few hundred meters of the atmosphere (instead of much deeper layers). This hypothesis emerges from a growing body of literature linking the near-ground wind profile to the organization of the low-level mesocyclone and thus the probability of tornadogenesis. This study further addresses the ramifications of near-ground SRH to the skill of the significant tornado parameter (STP), which is probably the most commonly used environmental indicator for tornadic thunderstorms. Using a sample of 20 194 severe, right-moving supercells spanning a 13-yr period, sounding-derived parameters were compared using forecast verification metrics, emphasizing a high probability of detection for tornadic supercells while minimizing false alarms. This climatology reveals that the kinematic components of environmental profiles are more skillful at discriminating significantly tornadic supercells from severe, nontornadic supercells than the thermodynamic components. The effective-layer SRH has by far the greatest forecast skill among the components of the STP, as it is currently defined. However, using progressively shallower layers for the SRH calculation leads to increasing forecast skill. Replacing the effective-layer SRH with the 0–500 m AGL SRH in the formulation of STP increases the number of correctly predicted events by 8% and decreases the number of missed events and false alarms by 18%. These results provide promising evidence that forecast parameters can still be improved through increased understanding of the environmental controls on the processes that govern tornado formation.
Abstract
This study examines the possibility that supercell tornado forecasts could be improved by utilizing the storm-relative helicity (SRH) in the lowest few hundred meters of the atmosphere (instead of much deeper layers). This hypothesis emerges from a growing body of literature linking the near-ground wind profile to the organization of the low-level mesocyclone and thus the probability of tornadogenesis. This study further addresses the ramifications of near-ground SRH to the skill of the significant tornado parameter (STP), which is probably the most commonly used environmental indicator for tornadic thunderstorms. Using a sample of 20 194 severe, right-moving supercells spanning a 13-yr period, sounding-derived parameters were compared using forecast verification metrics, emphasizing a high probability of detection for tornadic supercells while minimizing false alarms. This climatology reveals that the kinematic components of environmental profiles are more skillful at discriminating significantly tornadic supercells from severe, nontornadic supercells than the thermodynamic components. The effective-layer SRH has by far the greatest forecast skill among the components of the STP, as it is currently defined. However, using progressively shallower layers for the SRH calculation leads to increasing forecast skill. Replacing the effective-layer SRH with the 0–500 m AGL SRH in the formulation of STP increases the number of correctly predicted events by 8% and decreases the number of missed events and false alarms by 18%. These results provide promising evidence that forecast parameters can still be improved through increased understanding of the environmental controls on the processes that govern tornado formation.
Abstract
The ability to provide advanced warning on tornadoes can be impacted by variations in storm mode. This research evaluates 2 yr of National Weather Service (NWS) tornado warnings, verification reports, and radar-derived convective modes to appraise the ability of the NWS to warn across a variety of convective modes and environmental conditions. Several specific hypotheses are considered: (i) supercell morphologies are the easiest convective modes to warn for tornadoes and yield the greatest lead times, while tornadoes from more linear, nonsupercell convective modes, such as quasi-linear convective systems, are more difficult to warn for; (ii) parameters such as tornado distance from radar, population density, and tornado intensity (F scale) introduce significant and complex variability into warning statistics as a function of storm mode; and (iii) tornadoes from stronger storms, as measured by their mesocyclone strength (when present), convective available potential energy (CAPE), vertical wind shear, and significant tornado parameter (STP) are easier to warn for than tornadoes from weaker systems. Results confirmed these hypotheses. Supercell morphologies caused 97% of tornado fatalities, 96% of injuries, and 92% of damage during the study period. Tornado warnings for supercells had a statistically higher probability of detection (POD) and lead time than tornado warnings for nonsupercells; among supercell storms, tornadoes from supercells in lines were slightly more difficult to warn for than tornadoes from discrete or clusters of supercells. F-scale intensity and distance from radar had some impact on POD, with less impact on lead times. Higher mesocyclone strength (when applicable), CAPE, wind shear, and STP values were associated with greater tornado POD and lead times.
Abstract
The ability to provide advanced warning on tornadoes can be impacted by variations in storm mode. This research evaluates 2 yr of National Weather Service (NWS) tornado warnings, verification reports, and radar-derived convective modes to appraise the ability of the NWS to warn across a variety of convective modes and environmental conditions. Several specific hypotheses are considered: (i) supercell morphologies are the easiest convective modes to warn for tornadoes and yield the greatest lead times, while tornadoes from more linear, nonsupercell convective modes, such as quasi-linear convective systems, are more difficult to warn for; (ii) parameters such as tornado distance from radar, population density, and tornado intensity (F scale) introduce significant and complex variability into warning statistics as a function of storm mode; and (iii) tornadoes from stronger storms, as measured by their mesocyclone strength (when present), convective available potential energy (CAPE), vertical wind shear, and significant tornado parameter (STP) are easier to warn for than tornadoes from weaker systems. Results confirmed these hypotheses. Supercell morphologies caused 97% of tornado fatalities, 96% of injuries, and 92% of damage during the study period. Tornado warnings for supercells had a statistically higher probability of detection (POD) and lead time than tornado warnings for nonsupercells; among supercell storms, tornadoes from supercells in lines were slightly more difficult to warn for than tornadoes from discrete or clusters of supercells. F-scale intensity and distance from radar had some impact on POD, with less impact on lead times. Higher mesocyclone strength (when applicable), CAPE, wind shear, and STP values were associated with greater tornado POD and lead times.
Abstract
This study presents the development and testing of two statistical models that simulate tornado potential and wind speed. This study reports on the first-ever development of two multiple regression–based models to assist warning forecasters in statistically simulating tornado probability and tornado wind speed in a diagnostic manner based on radar-observed tornado signature attributes and one environmental parameter. Based on a robust database, the radar-based storm-scale circulation attributes (strength, height above ground, clarity) combine with the effective-layer significant tornado parameter to establish a tornado probability. The second model adds the categorical presence (absence) of a tornadic debris signature to derive the tornado wind speed. While the fits of these models are considered somewhat modest, their regression coefficients generally offer physical consistency, based on findings from previous research. Furthermore, simulating these models on an independent dataset and other past cases featured in previous research reveals encouraging signals for accurately identifying higher potential for tornadoes. This statistical application using large-sample-size datasets can serve as a first step to streamlining the process of reproducibly quantifying tornado threats by service-providing organizations in a diagnostic manner, encouraging consistency in messaging scientifically sound information for the protection of life and property.
Abstract
This study presents the development and testing of two statistical models that simulate tornado potential and wind speed. This study reports on the first-ever development of two multiple regression–based models to assist warning forecasters in statistically simulating tornado probability and tornado wind speed in a diagnostic manner based on radar-observed tornado signature attributes and one environmental parameter. Based on a robust database, the radar-based storm-scale circulation attributes (strength, height above ground, clarity) combine with the effective-layer significant tornado parameter to establish a tornado probability. The second model adds the categorical presence (absence) of a tornadic debris signature to derive the tornado wind speed. While the fits of these models are considered somewhat modest, their regression coefficients generally offer physical consistency, based on findings from previous research. Furthermore, simulating these models on an independent dataset and other past cases featured in previous research reveals encouraging signals for accurately identifying higher potential for tornadoes. This statistical application using large-sample-size datasets can serve as a first step to streamlining the process of reproducibly quantifying tornado threats by service-providing organizations in a diagnostic manner, encouraging consistency in messaging scientifically sound information for the protection of life and property.
Abstract
Radar-based convective modes were assigned to a sample of tornadoes and significant severe thunderstorms reported in the contiguous United States (CONUS) during 2003–11. The significant hail (≥2-in. diameter), significant wind (≥65-kt thunderstorm gusts), and tornadoes were filtered by the maximum event magnitude per hour on a 40-km Rapid Update Cycle model horizontal grid. The filtering process produced 22 901 tornado and significant severe thunderstorm events, representing 78.5% of all such reports in the CONUS during the sample period. The convective mode scheme presented herein begins with three radar-based storm categories: 1) discrete cells, 2) clusters of cells, and 3) quasi-linear convective systems (QLCSs). Volumetric radar data were examined for right-moving supercell (RM) and left-moving supercell characteristics within the three radar reflectivity designations. Additional categories included storms with marginal supercell characteristics and linear hybrids with a mix of supercell and QLCS structures. Smoothed kernel density estimates of events per decade revealed clear geographic and seasonal patterns of convective modes with tornadoes. Discrete and cluster RMs are the favored convective mode with southern Great Plains tornadoes during the spring, while the Deep South displayed the greatest variability in tornadic convective modes in the fall, winter, and spring. The Ohio Valley favored a higher frequency of QLCS tornadoes and a lower frequency of RM compared to the Deep South and the Great Plains. Tornadoes with nonsupercellular/non-QLCS storms were more common across Florida and the high plains in the summer. Significant hail events were dominated by Great Plains supercells, while variations in convective modes were largest for significant wind events.
Abstract
Radar-based convective modes were assigned to a sample of tornadoes and significant severe thunderstorms reported in the contiguous United States (CONUS) during 2003–11. The significant hail (≥2-in. diameter), significant wind (≥65-kt thunderstorm gusts), and tornadoes were filtered by the maximum event magnitude per hour on a 40-km Rapid Update Cycle model horizontal grid. The filtering process produced 22 901 tornado and significant severe thunderstorm events, representing 78.5% of all such reports in the CONUS during the sample period. The convective mode scheme presented herein begins with three radar-based storm categories: 1) discrete cells, 2) clusters of cells, and 3) quasi-linear convective systems (QLCSs). Volumetric radar data were examined for right-moving supercell (RM) and left-moving supercell characteristics within the three radar reflectivity designations. Additional categories included storms with marginal supercell characteristics and linear hybrids with a mix of supercell and QLCS structures. Smoothed kernel density estimates of events per decade revealed clear geographic and seasonal patterns of convective modes with tornadoes. Discrete and cluster RMs are the favored convective mode with southern Great Plains tornadoes during the spring, while the Deep South displayed the greatest variability in tornadic convective modes in the fall, winter, and spring. The Ohio Valley favored a higher frequency of QLCS tornadoes and a lower frequency of RM compared to the Deep South and the Great Plains. Tornadoes with nonsupercellular/non-QLCS storms were more common across Florida and the high plains in the summer. Significant hail events were dominated by Great Plains supercells, while variations in convective modes were largest for significant wind events.
Abstract
A severe thunderstorm wind gust climatology spanning 2003–09 for the contiguous United States is developed using measured Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS) wind gusts. Archived severe report information from the National Climatic Data Center publication Storm Data and single-site volumetric radar data are used to identify severe wind gust observations [≥50 kt (25.7 m s−1)] associated with thunderstorms and to classify the convective mode of the storms. The measured severe wind gust distribution, comprising only 2% of all severe gusts, is examined with respect to radar-based convective modes. The convective mode scheme presented herein focuses on three primary radar-based storm categories: supercell, quasi-linear convective systems (QLCSs), and disorganized. Measured severe gust frequency revealed distinct spatial patterns, where the high plains received the greatest number of gusts and occurred most often in the late spring and summer months. Severe wind gusts produced by supercells were most frequent over the plains, while those from QLCS gusts were most frequent in the plains and Midwest. Meanwhile, disorganized storms produced most of their severe gusts in the plains and Intermountain West. A reverse spatial distribution signal exists in the location between the maximum measured severe wind gust corridor located over the high plains and the maximum in all severe thunderstorm wind reports from Storm Data, located near and west of the southern Appalachians.
Abstract
A severe thunderstorm wind gust climatology spanning 2003–09 for the contiguous United States is developed using measured Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS) wind gusts. Archived severe report information from the National Climatic Data Center publication Storm Data and single-site volumetric radar data are used to identify severe wind gust observations [≥50 kt (25.7 m s−1)] associated with thunderstorms and to classify the convective mode of the storms. The measured severe wind gust distribution, comprising only 2% of all severe gusts, is examined with respect to radar-based convective modes. The convective mode scheme presented herein focuses on three primary radar-based storm categories: supercell, quasi-linear convective systems (QLCSs), and disorganized. Measured severe gust frequency revealed distinct spatial patterns, where the high plains received the greatest number of gusts and occurred most often in the late spring and summer months. Severe wind gusts produced by supercells were most frequent over the plains, while those from QLCS gusts were most frequent in the plains and Midwest. Meanwhile, disorganized storms produced most of their severe gusts in the plains and Intermountain West. A reverse spatial distribution signal exists in the location between the maximum measured severe wind gust corridor located over the high plains and the maximum in all severe thunderstorm wind reports from Storm Data, located near and west of the southern Appalachians.
Abstract
Previous work with observations from the NEXRAD (WSR-88D) network in the United States has shown that the probability of damage from a tornado, as represented by EF-scale ratings, increases as low-level rotational velocity increases. This work expands on previous studies by including reported tornadoes from 2014 to 2015, as well as a robust sample of nontornadic severe thunderstorms [≥1-in.- (2.54 cm) diameter hail, thunderstorm wind gusts ≥ 50 kt (25 m s−1), or reported wind damage] with low-level cyclonic rotation. The addition of the nontornadic sample allows the computation of tornado damage rating probabilities across a spectrum of organized severe thunderstorms represented by right-moving supercells and quasi-linear convective systems. Dual-polarization variables are used to ensure proper use of velocity data in the identification of tornadic and nontornadic cases. Tornado damage rating probabilities increase as low-level rotational velocity V rot increases and circulation diameter decreases. The influence of height above radar level (or range from radar) is less obvious, with a muted tendency for tornado damage rating probabilities to increase as rotation (of the same V rot magnitude) is observed closer to the ground. Consistent with previous work on gate-to-gate shear signatures such as the tornadic vortex signature, easily identifiable rotation poses a greater tornado risk compared to more nebulous areas of cyclonic azimuthal shear. Additionally, tornado probability distributions vary substantially (for similar sample sizes) when comparing the southeast United States, which has a high density of damage indicators, to the Great Plains, where damage indicators are more sparse.
Abstract
Previous work with observations from the NEXRAD (WSR-88D) network in the United States has shown that the probability of damage from a tornado, as represented by EF-scale ratings, increases as low-level rotational velocity increases. This work expands on previous studies by including reported tornadoes from 2014 to 2015, as well as a robust sample of nontornadic severe thunderstorms [≥1-in.- (2.54 cm) diameter hail, thunderstorm wind gusts ≥ 50 kt (25 m s−1), or reported wind damage] with low-level cyclonic rotation. The addition of the nontornadic sample allows the computation of tornado damage rating probabilities across a spectrum of organized severe thunderstorms represented by right-moving supercells and quasi-linear convective systems. Dual-polarization variables are used to ensure proper use of velocity data in the identification of tornadic and nontornadic cases. Tornado damage rating probabilities increase as low-level rotational velocity V rot increases and circulation diameter decreases. The influence of height above radar level (or range from radar) is less obvious, with a muted tendency for tornado damage rating probabilities to increase as rotation (of the same V rot magnitude) is observed closer to the ground. Consistent with previous work on gate-to-gate shear signatures such as the tornadic vortex signature, easily identifiable rotation poses a greater tornado risk compared to more nebulous areas of cyclonic azimuthal shear. Additionally, tornado probability distributions vary substantially (for similar sample sizes) when comparing the southeast United States, which has a high density of damage indicators, to the Great Plains, where damage indicators are more sparse.