Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: T. Haine x
  • Refine by Access: All Content x
Clear All Modify Search
S. L. Gray and T. W. N. Haine

Abstract

Measurements of anthropogenic tracers such as chlorofluorocarbons and tritium must be quantitatively combined with ocean general circulation models as a component of systematic model development. The authors have developed and tested an inverse method, using a Green’s function, to constrain general circulation models with transient tracer data. Using this method chlorofluorocarbon-11 and -12 (CFC-11 and -12) observations are combined with a North Atlantic configuration of the Miami Isopycnic Coordinate Ocean Model with 4/3° resolution.

Systematic differences can be seen between the observed CFC concentrations and prior CFC fields simulated by the model. These differences are reduced by the inversion, which determines the optimal gas transfer across the air–sea interface, accounting for uncertainties in the tracer observations. After including the effects of unresolved variability in the CFC fields, the model is found to be inconsistent with the observations because the model/data misfit slightly exceeds the error estimates. By excluding observations in waters ventilated north of the Greenland–Scotland ridge (σ 0 < 27.82 kg m−3; shallower than about 2000 m), the fit is improved, indicating that the Nordic overflows are poorly represented in the model. Some systematic differences in the model/data residuals remain and are related, in part, to excessively deep model ventilation near Rockall and deficient ventilation in the main thermocline of the eastern subtropical gyre. Nevertheless, there do not appear to be gross errors in the basin-scale model circulation. Analysis of the CFC inventory using the constrained model suggests that the North Atlantic Ocean shallower than about 2000 m was near 20% saturated in the mid-1990s. Overall, this basin is a sink to 22% of the total atmosphere-to-ocean CFC-11 flux—twice the global average value. The average water mass formation rates over the CFC transient are 7.0 and 6.0 Sv (Sv ≡ 106 m3 s−1) for subtropical mode water and subpolar mode water, respectively.

Full access
J. O. S. Alves, K. Haines, and D. L. T. Anderson

Abstract

Idealized twin experiments with the HOPE ocean model have been used to study the ability of sea level data assimilation to correct for errors in a model simulation of the tropical Pacific, using the Cooper and Haines method to project the surface height increments below the surface. This work should be seen in the context of the development of the comprehensive real-time ocean analysis system used at ECMWF for seasonal forecasting, which currently assimilates only thermal data.

Errors in the model simulation from two sources are studied: those present in the initial state and those generated by errors in the surface forcing during the simulation. In the former, the assimilation of sea level data improves the convergence of the model toward its twin. Without assimilation convergence occurs more slowly on the equator, compared to an experiment using only correct surface forcing. With forcing errors present the sea level assimilation still significantly reduces the errors almost everywhere. An exception was in the central equatorial Pacific where assimilation of sea level did not correct the errors. This is mainly due to this region responding rapidly to errors in wind stress forcing and also to relatively large freshwater flux errors imposed here. These lead to errors in the mixed layer salinity, which the Cooper and Haines scheme is not designed to correct. It is argued that surface salinity analyses would strongly complement sea level assimilation here.

Full access
Alan M. Iwi, Leon Hermanson, Keith Haines, and Rowan T. Sutton

Abstract

This study examines the sensitivity of the climate system to volcanic aerosol forcing in the third climate configuration of the Met Office Unified Model (HadCM3). The main test case was based on the 1880s when there were several volcanic eruptions, the well-known Krakatau being the largest. These eruptions increased atmospheric aerosol concentrations and induced a period of global cooling surface temperatures. In this study, an ensemble of HadCM3 has been integrated with the standard set of radiative forcings and aerosols from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations, from 1860 to present. A second ensemble removes the volcanic aerosols from 1880 to 1899. The all-forcings ensemble shows an attributable 1.2-Sv (1 Sv ≡ 106 m3 s−1) increase in the Atlantic meridional overturning circulation (AMOC) at 45°N—with a 0.04-PW increase in meridional heat transport at 40°N and increased northern Atlantic SSTs—starting around 1894, approximately 11 years after the first eruption, and lasting a further 10 years at least. The mechanisms responsible are traced to the Arctic, with suppression of the global water cycle (high-latitude precipitation), which leads to an increase in upper-level Arctic and Greenland Sea salinities. This then leads to increased convection in the Greenland–Iceland–Norwegian (GIN) Seas, enhanced Denmark Strait overflows, and AMOC changes with density anomalies traceable southward along the western Atlantic boundary. The authors investigate whether a similar response to the Pinatubo eruption in 1991 could still be ongoing, but do not find strong evidence.

Full access
M. G. Magaldi, T. W. N. Haine, and R. S. Pickart

Abstract

Results from a high-resolution (~2 km) numerical simulation of the Irminger Basin during summer 2003 are presented. The focus is on the East Greenland Spill Jet, a recently discovered component of the circulation in the basin. The simulation compares well with observations of surface fields, the Denmark Strait overflow (DSO), and the hydrographic structure of typical sections in the basin. The model reveals new aspects of the circulation on scales of O(0.1–10) days and O(1–100) km.

The model Spill Jet results from the cascade of dense waters over the East Greenland shelf. Spilling can occur in various locations southwest of the strait, and it is present throughout the simulation but exhibits large variations on periods of O(0.1–10) days. The Spill Jet sometimes cannot be distinguished in the velocity field from surface eddies or from the DSO. The vorticity structure of the jet confirms its unstable nature with peak relative and tilting vorticity terms reaching twice the planetary vorticity term.

The average model Spill Jet transport is 4.9 ±1.7 Sv (1 Sv ≡ 106 m3 s−1) equatorward, about 2½ times larger than has been previously reported from a single ship transect in August 2001. Kinematic analysis of the model results suggests two different types of spilling events. In the first case (type I), a local perturbation results in dense waters descending over the shelf break into the Irminger Basin. In the second case (type II), surface cyclones associated with DSO deep domes initiate the spilling process. During summer 2003, more than half of the largest Spill Jet transport values are of type II.

Full access
K. D. Stewart, T. W. N. Haine, A. McC. Hogg, and F. Roquet

Abstract

The surface mixed layer (ML) governs atmosphere–ocean fluxes, and thereby affects Earth’s climate. Accurate representation of ML processes in ocean models remains a challenge, however. The O(100) m deep ML exhibits substantial horizontal thermohaline gradients, despite being near-homogenous vertically, making it an ideal location for processes that result from the nonlinearity of the equation of state, such as cabbeling and thermobaricity. Traditional approaches to investigate these processes focus on their roles in interior water-mass transformation and are ill suited to examine their influence on the ML. However, given the climatic significance of the ML, quantifying the extent to which cabbeling and thermobaricity influence the ML density field offers insight into improving ML representations in ocean models. A recent simplified equation of state of seawater allows the local effects of cabbeling and thermobaric processes in the ML to be expressed analytically as functions of the local temperature gradient and ML depth. These simplified expressions are used to estimate the extent to which cabbeling and thermobaricity contribute to local ML density differences. These estimates compare well with values calculated directly using the complete nonlinear equation of state. Cabbeling and thermobaricity predominantly influence the ML density field poleward of 30°. Mixed layer thermobaricity is basin-scale and winter intensified, while ML cabbeling is perennial and localized to intense, zonally coherent regions associated with strong temperature fronts, such as the Antarctic Circumpolar Current and the Kuroshio and Gulf Stream Extensions. For latitudes between 40° and 50° in both hemispheres, the zonally averaged effects of ML cabbeling and ML thermobaricity can contribute on the order of 10% of the local ML density difference.

Full access
J. Segschneider, D. L. T. Anderson, J. Vialard, M. Balmaseda, T. N. Stockdale, A. Troccoli, and K. Haines

Abstract

In this paper, the combined assimilation of satellite observed sea level anomalies and in situ temperature data into a global ocean model, which is used to initialize a coupled ocean–atmosphere forecast system, is described. The altimeter data are first used to create synthetic temperature observations, which are then combined with the directly observed temperature profiles in an optimum interpolation scheme. In addition to temperature, salinity is corrected based on a preservation of the model's local temperature–salinity relationship. Coupled forecasts with a lead time of up to 6 months are initialized from the ocean analyses and the impact of the data assimilation on both the ocean analysis and the coupled forecasts is investigated. It is shown that forecasts of sea surface temperature anomalies in the Niño-3 area can be improved by initializing the coupled forecast model with the ocean analysis in which temperature and altimeter data are assimilated in combination. The results further imply that a good simulation of the salinity field is required to make optimum use of the altimeter data.

Full access
Alberto Troccoli, Magdalena Alonso Balmaseda, Joachim Segschneider, Jerome Vialard, David L. T. Anderson, Keith Haines, Tim Stockdale, Frederic Vitart, and Alan D. Fox

Abstract

This paper is an evaluation of the role of salinity in the framework of temperature data assimilation in a global ocean model that is used to initialize seasonal climate forecasts. It is shown that the univariate assimilation of temperature profiles, without attempting to correct salinity, can induce first-order errors in the subsurface temperature and salinity fields. A recently developed scheme by A. Troccoli and K. Haines is used to improve the salinity field. In this scheme, salinity increments are derived from the observed temperature, by using the model temperature and salinity profiles, assuming that the temperature–salinity relationship in the model profiles is preserved. In addition, the temperature and salinity fields are matched below the observed temperature profile by vertically displacing the original model profiles.

Two data assimilation experiments were performed for the 6-yr period 1993–98. These show that the salinity scheme is effective at maintaining the haline and thermal structures at and below thermocline level, especially in tropical regions, by avoiding spurious convection. In addition to improvements in the mean state, the scheme allows more temporal variability than simply controlling the salinity field by relaxation to climatological data. Some comparisons with sparse salinity observations are also made, which suggest that the subsurface salinity variability in the western Pacific is better reproduced in the experiment in which the salinity scheme is used. The salinity analyses might be improved further by use of altimeter sea level or sea surface salinity observations from satellite.

Full access
L. Illari, J. Marshall, P. Bannon, J. Botella, R. Clark, T. Haine, A. Kumar, S. Lee, K. J. Mackin, G. A. McKinley, M. Morgan, R. Najjar, T. Sikora, and A. Tandon

A collaboration between faculty and students at six universities in a project called Weather in a Tank is described, in which ways of teaching atmosphere, ocean, and climate dynamics are explored that bring students into contact with real fluids and fundamental ideas. Exploiting the use of classic rotating laboratory experiments, real-time meteorological data and associated theory, teaching tools, curricular, and evaluation materials have been developed that focus on fundamental aspects of atmospheric and oceanographic dynamics for use in undergraduate teaching. The intent of the project is to help students learn how to move between phenomena in the real world, theory, and models.

Full access
I. A. Renfrew, G. W. K. Moore, J. E. Kristjánsson, H. Ólafsson, S. L. Gray, G. N. Petersen, K. Bovis, P. R. A. Brown, I. Føre, T. Haine, C. Hay, E. A. Irvine, A Lawrence, T. Ohigashi, S. Outten, R. S. Pickart, M. Shapiro, D. Sproson, R. Swinbank, A. Woolley, and S. Zhang

Greenland has a major influence on the atmospheric circulation of the North Atlantic-western European region, dictating the location and strength of mesoscale weather systems around the coastal seas of Greenland and directly influencing synoptic-scale weather systems both locally and downstream over Europe. High winds associated with the local weather systems can induce large air-sea fluxes of heat, moisture, and momentum in a region that is critical to the overturning of the thermohaline circulation, and thus play a key role in controlling the coupled atmosphere-ocean climate system.

The Greenland Flow Distortion Experiment (GFDex) is investigating the role of Greenland in defining the structure and predictability of both local and downstream weather systems through a program of aircraft-based observation and numerical modeling. The GFDex observational program is centered upon an aircraft-based field campaign in February and March 2007, at the dawn of the International Polar Year. Twelve missions were flown with the Facility for Airborne Atmospheric Measurements' BAe-146, based out of the Keflavik, Iceland. These included the first aircraft-based observations of a reverse tip jet event, the first aircraft-based observations of barrier winds off of southeast Greenland, two polar mesoscale cyclones, a dramatic case of lee cyclogenesis, and several targeted observation missions into areas where additional observations were predicted to improve forecasts.

In this overview of GFDex the background, aims and objectives, and facilities and logistics are described. A summary of the campaign is provided, along with some of the highlights of the experiment.

Full access