Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: T. Markus x
  • All content x
Clear All Modify Search
Katrina E. Bennett, Arelia T. Werner, and Markus Schnorbus

Abstract

Three headwater basins located across British Columbia (BC) were analyzed using a hydrologic model driven by five global climate models (GCMs) and three scenarios from the Special Report on Emissions Scenarios (SRES) to project future changes in seasonal water budgets and assess the uncertainty in the projections arising from GCMs, emissions scenarios, and hydrologic model parameterizations under two future time periods. Future projected changes in temperature are for annual increases of approximately +2°C by the 2050s and +3°C by the 2080s. The 2050s and 2080s precipitation projections are for increased winter precipitation in all basins and decreases in summertime precipitation for two of the three basins—with increases projected in the northeastern BC subwatershed. The study found that the hydrologic parameter uncertainty ranged up to 55%, (average 31%) for winter runoff anomalies, which was less than the uncertainty associated with GCMs and emissions scenarios that ranged up to 135% and 78% (average 84% and 58%, respectively). The uncertainty results were variable across the three hydroclimate regimes. Coastal headwater systems in British Columbia experience more uncertainty associated with changes during winter and the summer, whereas interior systems experience the greatest uncertainties during the winter and spring. Changes projected for the 2050s at the coastal site fell outside of the range of natural variability, a robust shift that may result in a very different regime for this basin within the short planning horizon of 50 years. A small, semiarid watershed located on the Chilcotin Plateau exhibited changes to the hydrologic regime that were projected to be small in absolute terms and fell within the range of natural variability.

Full access
Rajesh R. Shrestha, Markus A. Schnorbus, Arelia T. Werner, and Francis W. Zwiers

Abstract

This study analyzed potential hydroclimatic change in the Peace River basin in the province of British Columbia, Canada, based on two structurally different approaches: (i) statistically downscaled global climate models (GCMs) using the bias-corrected spatial disaggregation (BCSD) and (ii) dynamically downscaled GCM with the Canadian Regional Climate Model (CRCM). Additionally, simulated hydrologic changes from the GCM–BCSD-driven Variable Infiltration Capacity (VIC) model were compared to the CRCM integrated Canadian Land Surface Scheme (CLASS) output. The results show good agreements of the GCM–BCSD–VIC simulated precipitation, temperature, and runoff with observations, while the CRCM-simulated results differ substantially from observations. Nevertheless, differences (between the 2050s and 1970s) obtained from the two approaches are qualitatively similar for precipitation and temperature, although they are substantially different for snow water equivalent and runoff. The results obtained from the five Coupled Global Climate Model, version 3, (CGCM3)-driven CRCM runs are similar, suggesting that the multidecadal internal variability is not a large source of uncertainty for the Peace River basin. Overall, the GCM–BCSD–VIC approach, for now, remains the preferred approach for projecting basin-scale future hydrologic changes, provided that it explicitly accounts for the biases and includes plausible snow and runoff parameterizations. However, even with the GCM–BCSD–VIC approach, projections differ considerably depending on which of an ensemble of eight GCMs is used. Such differences reemphasize the uncertain nature of future hydroclimatic projections.

Full access
Andrew D. King, Mitchell T. Black, David J. Karoly, and Markus G. Donat
Full access
Markus Jochum, Alexandra Jahn, Synte Peacock, David A. Bailey, John T. Fasullo, Jennifer Kay, Samuel Levis, and Bette Otto-Bliesner

Abstract

The equilibrium solution of a fully coupled general circulation model with present-day orbital forcing is compared to the solution of the same model with the orbital forcing from 115 000 years ago. The difference in snow accumulation between these two simulations has a pattern and a magnitude comparable to the ones inferred from reconstructions for the last glacial inception. This is a major improvement over previous similar studies, and the increased realism is attributed to the higher spatial resolution in the atmospheric model, which allows for a more accurate representation of the orography of northern Canada and Siberia. The analysis of the atmospheric heat budget reveals that, as postulated by Milankovitch’s hypothesis, the only necessary positive feedback is the snow–albedo feedback, which is initiated by reduced melting of snow and sea ice in the summer. However, this positive feedback is almost fully compensated by an increased meridional heat transport in the atmosphere and a reduced concentration of low Arctic clouds. In contrast to similar previous studies, the ocean heat transport remains largely unchanged. This stability of the northern North Atlantic circulation is explained by the regulating effect of the freshwater import through the Nares Strait and Northwest Passage and the spiciness import by the North Atlantic Current.

Full access
Christine A. Shields, David A. Bailey, Gokhan Danabasoglu, Markus Jochum, Jeffrey T. Kiehl, Samuel Levis, and Sungsu Park

Abstract

The low-resolution version of the Community Climate System Model, version 4 (CCSM4) is a computationally efficient alternative to the intermediate and standard resolution versions of this fully coupled climate system model. It employs an atmospheric horizontal grid of 3.75° × 3.75° and 26 levels in the vertical with a spectral dynamical core (T31) and an oceanic horizontal grid that consists of a nominal 3° resolution with 60 levels in the vertical. This low-resolution version (T31x3) can be used for a variety of applications including long equilibrium simulations, development work, and sensitivity studies. The T31x3 model is validated for modern conditions by comparing to available observations. Significant problems exist for Northern Hemisphere Arctic locales where sea ice extent and thickness are excessive. This is partially due to low heat transport in T31x3, which translates into a globally averaged sea surface temperature (SST) bias of −1.54°C compared to observational estimates from the 1870–99 historical record and a bias of −1.26°C compared to observations from the 1986–2005 historical record. Maximum zonal wind stress magnitude in the Southern Hemisphere matches observational estimates over the ocean, although its placement is incorrectly displaced equatorward. Aspects of climate variability in T31x3 compare to observed variability, especially so for ENSO where the amplitude and period approximate observations. T31x3 surface temperature anomaly trends for the twentieth century also follow observations. An examination of the T31x3 model relative to the intermediate CCSM4 resolution (finite volume dynamical core 1.9° × 2.5°) for preindustrial conditions shows the T31x3 model approximates this solution for climate state and variability metrics examined here.

Full access
R. Kwok, T. Markus, J. Morison, S. P. Palm, T. A. Neumann, K. M. Brunt, W. B. Cook, D. W. Hancock, and G. F. Cunningham

Abstract

The sole instrument on the upcoming Ice, Cloud, and Land Elevation Satellite (ICESat-2) altimetry mission is a micropulse lidar that measures the time of flight of individual photons from laser pulses transmitted at 532 nm. Prior to launch, the Multiple Altimeter Beam Experimental Lidar (MABEL) serves as an airborne implementation for testing and development. This paper provides a first examination of MABEL data acquired on two flights over sea ice in April 2012: one north of the Arctic coast of Greenland and the other in the east Greenland Sea. The phenomenology of photon distributions in the sea ice returns is investigated. An approach to locate the surface and estimate its elevation in the distributions is described, and its achievable precision is assessed. Retrieved surface elevations over relatively flat leads in the ice cover suggest that precisions of several centimeters are attainable. Restricting the width of the elevation window used in the surface analysis can mitigate potential biases in the elevation estimates due to subsurface returns at 532 nm. Comparisons of nearly coincident elevation profiles from MABEL with those acquired by an analog lidar show good agreement. Discrimination of ice and open water, a crucial step in the determination of sea ice freeboard and the estimation of ice thickness, is facilitated by contrasts in the observed signal–background photon statistics. Future flight paths will sample a broader range of seasonal ice conditions for further evaluation of the year-round profiling capabilities and limitations of the MABEL instrument.

Full access
Morteza Sadeghi, Ardeshir Ebtehaj, Wade T. Crow, Lun Gao, Adam J. Purdy, Joshua B. Fisher, Scott B. Jones, Ebrahim Babaeian, and Markus Tuller

Abstract

In-depth knowledge about the global patterns and dynamics of land surface net water flux (NWF) is essential for quantification of depletion and recharge of groundwater resources. Net water flux cannot be directly measured, and its estimates as a residual of individual surface flux components often suffer from mass conservation errors due to accumulated systematic biases of individual fluxes. Here, for the first time, we provide direct estimates of global NWF based on near-surface satellite soil moisture retrievals from the Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites. We apply a recently developed analytical model derived via inversion of the linearized Richards’ equation. The model is parsimonious, yet yields unbiased estimates of long-term cumulative NWF that is generally well correlated with the terrestrial water storage anomaly from the Gravity Recovery and Climate Experiment (GRACE) satellite. In addition, in conjunction with precipitation and evapotranspiration retrievals, the resultant NWF estimates provide a new means for retrieving global infiltration and runoff from satellite observations. However, the efficacy of the proposed approach over densely vegetated regions is questionable, due to the uncertainty of the satellite soil moisture retrievals and the lack of explicit parameterization of transpiration by deeply rooted plants in the proposed model. Future research is needed to advance this modeling paradigm to explicitly account for plant transpiration.

Free access
M. Ades, R. Adler, Rob Allan, R. P. Allan, J. Anderson, Anthony Argüez, C. Arosio, J. A. Augustine, C. Azorin-Molina, J. Barichivich, J. Barnes, H. E. Beck, Andreas Becker, Nicolas Bellouin, Angela Benedetti, David I. Berry, Stephen Blenkinsop, Olivier. Bock, Michael G. Bosilovich, Olivier. Boucher, S. A. Buehler, Laura. Carrea, Hanne H. Christiansen, F. Chouza, John R. Christy, E.-S. Chung, Melanie Coldewey-Egbers, Gil P. Compo, Owen R. Cooper, Curt Covey, A. Crotwell, Sean M. Davis, Elvira de Eyto, Richard A. M de Jeu, B.V. VanderSat, Curtis L. DeGasperi, Doug Degenstein, Larry Di Girolamo, Martin T. Dokulil, Markus G. Donat, Wouter A. Dorigo, Imke Durre, Geoff S. Dutton, G. Duveiller, James W. Elkins, Vitali E. Fioletov, Johannes Flemming, Michael J. Foster, Richard A. Frey, Stacey M. Frith, Lucien Froidevaux, J. Garforth, S. K. Gupta, Leopold Haimberger, Brad D. Hall, Ian Harris, Andrew K Heidinger, D. L. Hemming, Shu-peng (Ben) Ho, Daan Hubert, Dale F. Hurst, I. Hüser, Antje Inness, K. Isaksen, Viju John, Philip D. Jones, J. W. Kaiser, S. Kelly, S. Khaykin, R. Kidd, Hyungiun Kim, Z. Kipling, B. M. Kraemer, D. P. Kratz, R. S. La Fuente, Xin Lan, Kathleen O. Lantz, T. Leblanc, Bailing Li, Norman G Loeb, Craig S. Long, Diego Loyola, Wlodzimierz Marszelewski, B. Martens, Linda May, Michael Mayer, M. F. McCabe, Tim R. McVicar, Carl A. Mears, W. Paul Menzel, Christopher J. Merchant, Ben R. Miller, Diego G. Miralles, Stephen A. Montzka, Colin Morice, Jens Mühle, R. Myneni, Julien P. Nicolas, Jeannette Noetzli, Tim J. Osborn, T. Park, A. Pasik, Andrew M. Paterson, Mauri S. Pelto, S. Perkins-Kirkpatrick, G. Pétron, C. Phillips, Bernard Pinty, S. Po-Chedley, L. Polvani, W. Preimesberger, M. Pulkkanen, W. J. Randel, Samuel Rémy, L. Ricciardulli, A. D. Richardson, L. Rieger, David A. Robinson, Matthew Rodell, Karen H. Rosenlof, Chris Roth, A. Rozanov, James A. Rusak, O. Rusanovskaya, T. Rutishäuser, Ahira Sánchez-Lugo, P. Sawaengphokhai, T. Scanlon, Verena Schenzinger, S. Geoffey Schladow, R. W Schlegel, Eawag Schmid, Martin, H. B. Selkirk, S. Sharma, Lei Shi, S. V. Shimaraeva, E. A. Silow, Adrian J. Simmons, C. A. Smith, Sharon L Smith, B. J. Soden, Viktoria Sofieva, T. H. Sparks, Paul W. Stackhouse Jr., Wolfgang Steinbrecht, Dimitri A. Streletskiy, G. Taha, Hagen Telg, S. J. Thackeray, M. A. Timofeyev, Kleareti Tourpali, Mari R. Tye, Ronald J. van der A, Robin, VanderSat B.V. van der Schalie, Gerard van der SchrierW. Paul, Guido R. van der Werf, Piet Verburg, Jean-Paul Vernier, Holger Vömel, Russell S. Vose, Ray Wang, Shohei G. Watanabe, Mark Weber, Gesa A. Weyhenmeyer, David Wiese, Anne C. Wilber, Jeanette D. Wild, Takmeng Wong, R. Iestyn Woolway, Xungang Yin, Lin Zhao, Guanguo Zhao, Xinjia Zhou, Jerry R. Ziemke, and Markus Ziese
Full access