Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: T. Uttal x
  • Refine by Access: All Content x
Clear All Modify Search
T. Uttal
,
J. B. Snider
,
R. A. Kropfli
, and
B. W. Orr

Abstract

Vapor fluxes are calculated across a mountain barrier during two wintertime storms using a passive microwave radiometer and a Doppler radar. The vapor flux fields are shown to have complicated structures that are not detectable by conventional rawinsonde techniques. The vapor-flux fields show several major pulses which are compared to episodes of supercooled liquid water, riming, precipitation and synoptic weather patterns. It appears from this data that the presence of an enhanced vapor in the flux field is a necessary condition for precipitation, but not a sufficient condition. It is suggested that detailed measurements of the vapor flux field are imperative to the improved local forecasting of precipitation.

Full access
I. Gultepe
,
D. O'C. Starr
,
A. J. Heymsfield
,
T. Uttal
,
T. P. Ackerman
, and
D. L. WestPhal

Abstract

Cirrus clouds that formed on 26 November and 6 December 1991 during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) II, which took place over the Kansas region. are studied because of significant dynamic activity in the micro (<1 km) and meso γ (<25 km) scales within the cloud. Observations are obtained from the NCAR King Air, NOAA Doppler, and PSU conventional radar. For this reason coherent structures (e.g., cells, vortex) that transfer significant heat, moisture, and turbulence are analyzed using aircraft and radar observations. Aircraft data is collected at 20 Hz, and calculations are made at two different scales. Scale separation is chosen at about 1 km. A coherence analysis technique is used to specify the correlation between temperature and vertical velocity w fluctuations. A swirling coefficient, indicating spirality, is calculated to better understand cloud dynamics. Sensible heat, latent heat, and radiative fluxes are compared with each other in two scales. Results showed that dynamic activity, including w about ±1.5 m s−1, and mean sensible heat fluxes (SHFs) and latent heat fluxes (LHFs) ∼10 W m−2 is estimated to be much larger for the 26 November case compared to the 6 December case. The swirling coefficient is estimated to be larger in upper and lower levels compared to those in middle levels for both days. Individual values of SHFs and LHFs are also found to be comparable with those of FIRE I. The size of coherent structures is estimated from aircraft and radar measurements to be about 0.5 and 3.5 km.

Full access
P. Zuidema
,
B. Baker
,
Y. Han
,
J. Intrieri
,
J. Key
,
P. Lawson
,
S. Matrosov
,
M. Shupe
,
R. Stone
, and
T. Uttal

Abstract

The microphysical characteristics, radiative impact, and life cycle of a long-lived, surface-based mixed-layer, mixed-phase cloud with an average temperature of approximately −20°C are presented and discussed. The cloud was observed during the Surface Heat Budget of the Arctic experiment (SHEBA) from 1 to 10 May 1998. Vertically resolved properties of the liquid and ice phases are retrieved using surface-based remote sensors, utilize the adiabatic assumption for the liquid component, and are aided by and validated with aircraft measurements from 4 and 7 May. The cloud radar ice microphysical retrievals, originally developed for all-ice clouds, compare well with aircraft measurements despite the presence of much greater liquid water contents than ice water contents. The retrieved time-mean liquid cloud optical depth of 10.1 ± 7.8 far surpasses the mean ice cloud optical depth of 0.2, so that the liquid phase is primarily responsible for the cloud’s radiative (flux) impact. The ice phase, in turn, regulates the overall cloud optical depth through two mechanisms: sedimentation from a thin upper ice cloud, and a local ice production mechanism with a time scale of a few hours, thought to reflect a preferred freezing of the larger liquid drops. The liquid water paths replenish within half a day or less after their uptake by ice, attesting to strong water vapor fluxes. Deeper boundary layer depths and higher cloud optical depths coincide with large-scale rising motion at 850 hPa, but the synoptic activity is also associated with upper-level ice clouds. Interestingly, the local ice formation mechanism appears to be more active when the large-scale subsidence rate implies increased cloud-top entrainment. Strong cloud-top radiative cooling rates promote cloud longevity when the cloud is optically thick. The radiative impact of the cloud upon the surface is significant: a time-mean positive net cloud forcing of 41 W m−2 with a diurnal amplitude of ∼20 W m−2. This is primarily because a high surface reflectance (0.86) reduces the solar cooling influence. The net cloud forcing is primarily sensitive to cloud optical depth for the low-optical-depth cloudy columns and to the surface reflectance for the high-optical-depth cloudy columns. Any projected increase in the springtime cloud optical depth at this location (76°N, 165°W) is not expected to significantly alter the surface radiation budget, because clouds were almost always present, and almost 60% of the cloudy columns had optical depths >6.

Full access
B.A. Baum
,
T. Uttal
,
M. Poellot
,
T.P. Ackerman
,
J.M. Alvarez
,
J. Intrieri
,
D.O'C. Starr
,
J. Titlow
,
V. Tovinkere
, and
E. Clothiaux

Abstract

The goals of the current study are threefold: 1) to present a multispectral, multiresolution (MSMR) methodology for analysis of scenes containing multiple cloud layers; 2) to apply the MSMR method to two multilevel cloud scenes recorded by the NOAA Advanced Very High Resolution Radiometer (AVHRR) and the High Resolution Infrared Radiometer Sounder (HIRS/2) instruments during the First International Satellite Cloud Climatology Program (ISCCP) Regional Experiment (FIRE) on 28 November 1991; and 3) to validate the cloud-top height results from the case study analyses through comparison with lidar, radar, aircraft and rawin-sonde data. The measurements available from FIRE Cirrus II enable detailed examination of two complex cloud scenes in which cirrus and stratus appear simultaneously.

A “fuzzy logic” classification system is developed to determine whether a 32×32 array of AVHRR data contains clear sky, low-level cloud, midlevel cloud, high-level cloud, or multiple cloud layers. With the addition of the fray logic cloud classification system, it is possible for the first time to find evidence of more than one cloud layer within each HMS field of view. Low cloud heights are determined through application of the spatial coherence method to the AVHRR data, while mid- to high-level cloud heights are calculated from the HIRS/2 15-µm CO2 band radiometric data that are collocated with the AVHRR data. Cirrus cloud heights retrieved from HIRS 15-µm CO2 band data are improved for optically thin cirrus through the use of the upper-tropospheric humidity profile. The MSMR-derived cloud heights are consistent with coincident lidar, radar, and aircraft data. Cirrus and stratus cloud-top heights and cirrus effective emittances are retrieved for data within an ISCCP 2.5° grid cell that encompasses the FIRE experimental region.

Full access
J. M. Intrieri
,
W. L. Eberhard
,
T. Uttal
,
J. A. Shaw
,
J. B. Snider
,
Y. Han
,
B. W. Orr
, and
S. Y. Matrosov

Abstract

Simultaneous multiwavelength measurements of a developing cloud system were obtained by NOAA Doppler lidar, Doppler radar, Fourier transform infrared interferometer, and microwave and infrared radiometers on 26 November 1991. The evolution of the cloud system is described in terms of lidar backscatter, radar reflectivity and velocity, interferometer atmospheric spectra, and radiometer brightness temperature, integrated liquid water, and water vapor paths. Utilizing the difference in wavelength between the radar and lidar, and therefore their independent sensitivity to different regions of the same cloud, the cloud top, base, depth, and multiple layer heights can he determined with better accuracy than with either instrument alone. Combining the radar, lidar, and radiometer measurements using two different techniques allows an estimation of the vertical profile of cloud microphysical properties such as particle sizes. Enhancement of lidar backscatter near zenith revealed when highly oriented ice crystals were present. The authors demonstrate that no single instrument is sufficient to accurately describe cirrus clouds and that measurements in combination can provide important details on their geometric, radiative, and microphysical properties.

Full access
D.L. Westphal
,
S. Kinne
,
P. Pilewskie
,
J.M. Alvarez
,
P. Minnis
,
D.F. Young
,
S.G. Benjamin
,
W.L. Eberhard
,
R.A. Kropfli
,
S.Y. Matrosov
,
J.B. Snider
,
T.A. Uttal
,
A.J. Heymsfield
,
G.G. Mace
,
S.H. Melfi
,
D.O'C. Starr
, and
J.J. Soden

Abstract

Observations from a wide variety of instruments and platforms are used to validate many different aspects of a three-dimensional mesoscale simulation of the dynamics, cloud microphysics, and radiative transfer of a cirrus cloud system observed on 26 November 1991 during the second cirrus field program of the First International Satellite Cloud Climatology Program (ISCCP) Regional Experiment (FIRE-II) located in southeastern Kansas. The simulation was made with a mesoscale dynamical model utilizing a simplified bulk water cloud scheme and a spectral model of radiative transfer. Expressions for cirrus optical properties for solar and infrared wavelength intervals as functions of ice water content and effective particle radius are modified for the midlatitude cirrus observed during FIRE-II and are shown to compare favorably with explicit size-resolving calculations of the optical properties. Rawinsonde, Raman lidar, and satellite data are evaluated and combined to produce a time–height cross section of humidity at the central FIRE-II site for model verification. Due to the wide spacing of rawinsondes and their infrequent release, important moisture features go undetected and are absent in the conventional analyses. The upper-tropospheric humidities used for the initial conditions were generally less than 50% of those inferred from satellite data, yet over the course of a 24-h simulation the model produced a distribution that closely resembles the large-scale features of the satellite analysis. The simulated distribution and concentration of ice compares favorably with data from radar, lidar, satellite, and aircraft. Direct comparison is made between the radiative transfer simulation and data from broadband and spectral sensors and inferred quantities such as cloud albedo, optical depth, and top-of-the-atmosphere 11-µm brightness temperature, and the 6.7-µm brightness temperature. Comparison is also made with theoretical heating rates calculated using the rawinsonde data and measured ice water size distributions near the central site. For this case study, and perhaps for most other mesoscale applications, the differences between the observed and simulated radiative quantities are due more to errors in the prediction of ice water content, than to errors in the optical properties or the radiative transfer solution technique.

Full access
J. A. Curry
,
P. V. Hobbs
,
M. D. King
,
D. A. Randall
,
P. Minnis
,
G. A. Isaac
,
J. O. Pinto
,
T. Uttal
,
A. Bucholtz
,
D. G. Cripe
,
H. Gerber
,
C. W. Fairall
,
T. J. Garrett
,
J. Hudson
,
J. M. Intrieri
,
C. Jakob
,
T. Jensen
,
P. Lawson
,
D. Marcotte
,
L. Nguyen
,
P. Pilewskie
,
A. Rangno
,
D. C. Rogers
,
K. B. Strawbridge
,
F. P. J. Valero
,
A. G. Williams
, and
D. Wylie

An overview is given of the First ISCCP Regional Experiment Arctic Clouds Experiment that was conducted during April–July 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud–radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and at Barrow, Alaska. This paper describes the programmatic and scientific objectives of the project, the experimental design (including research platforms and instrumentation), the conditions that were encountered during the field experiment, and some highlights of preliminary observations, modeling, and satellite remote sensing studies.

Full access
Taneil Uttal
,
Sandra Starkweather
,
James R. Drummond
,
Timo Vihma
,
Alexander P. Makshtas
,
Lisa S. Darby
,
John F. Burkhart
,
Christopher J. Cox
,
Lauren N. Schmeisser
,
Thomas Haiden
,
Marion Maturilli
,
Matthew D. Shupe
,
Gijs De Boer
,
Auromeet Saha
,
Andrey A. Grachev
,
Sara M. Crepinsek
,
Lori Bruhwiler
,
Barry Goodison
,
Bruce McArthur
,
Von P. Walden
,
Edward J. Dlugokencky
,
P. Ola G. Persson
,
Glen Lesins
,
Tuomas Laurila
,
John A. Ogren
,
Robert Stone
,
Charles N. Long
,
Sangeeta Sharma
,
Andreas Massling
,
David D. Turner
,
Diane M. Stanitski
,
Eija Asmi
,
Mika Aurela
,
Henrik Skov
,
Konstantinos Eleftheriadis
,
Aki Virkkula
,
Andrew Platt
,
Eirik J. Førland
,
Yoshihiro Iijima
,
Ingeborg E. Nielsen
,
Michael H. Bergin
,
Lauren Candlish
,
Nikita S. Zimov
,
Sergey A. Zimov
,
Norman T. O’Neill
,
Pierre F. Fogal
,
Rigel Kivi
,
Elena A. Konopleva-Akish
,
Johannes Verlinde
,
Vasily Y. Kustov
,
Brian Vasel
,
Viktor M. Ivakhov
,
Yrjö Viisanen
, and
Janet M. Intrieri

Abstract

International Arctic Systems for Observing the Atmosphere (IASOA) activities and partnerships were initiated as a part of the 2007–09 International Polar Year (IPY) and are expected to continue for many decades as a legacy program. The IASOA focus is on coordinating intensive measurements of the Arctic atmosphere collected in the United States, Canada, Russia, Norway, Finland, and Greenland to create synthesis science that leads to an understanding of why and not just how the Arctic atmosphere is evolving. The IASOA premise is that there are limitations with Arctic modeling and satellite observations that can only be addressed with boots-on-the-ground, in situ observations and that the potential of combining individual station and network measurements into an integrated observing system is tremendous. The IASOA vision is that by further integrating with other network observing programs focusing on hydrology, glaciology, oceanography, terrestrial, and biological systems it will be possible to understand the mechanisms of the entire Arctic system, perhaps well enough for humans to mitigate undesirable variations and adapt to inevitable change.

Full access