Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: T. W. N. Haine x
- Refine by Access: All Content x
Abstract
Measurements of anthropogenic tracers such as chlorofluorocarbons and tritium must be quantitatively combined with ocean general circulation models as a component of systematic model development. The authors have developed and tested an inverse method, using a Green’s function, to constrain general circulation models with transient tracer data. Using this method chlorofluorocarbon-11 and -12 (CFC-11 and -12) observations are combined with a North Atlantic configuration of the Miami Isopycnic Coordinate Ocean Model with 4/3° resolution.
Systematic differences can be seen between the observed CFC concentrations and prior CFC fields simulated by the model. These differences are reduced by the inversion, which determines the optimal gas transfer across the air–sea interface, accounting for uncertainties in the tracer observations. After including the effects of unresolved variability in the CFC fields, the model is found to be inconsistent with the observations because the model/data misfit slightly exceeds the error estimates. By excluding observations in waters ventilated north of the Greenland–Scotland ridge (σ 0 < 27.82 kg m−3; shallower than about 2000 m), the fit is improved, indicating that the Nordic overflows are poorly represented in the model. Some systematic differences in the model/data residuals remain and are related, in part, to excessively deep model ventilation near Rockall and deficient ventilation in the main thermocline of the eastern subtropical gyre. Nevertheless, there do not appear to be gross errors in the basin-scale model circulation. Analysis of the CFC inventory using the constrained model suggests that the North Atlantic Ocean shallower than about 2000 m was near 20% saturated in the mid-1990s. Overall, this basin is a sink to 22% of the total atmosphere-to-ocean CFC-11 flux—twice the global average value. The average water mass formation rates over the CFC transient are 7.0 and 6.0 Sv (Sv ≡ 106 m3 s−1) for subtropical mode water and subpolar mode water, respectively.
Abstract
Measurements of anthropogenic tracers such as chlorofluorocarbons and tritium must be quantitatively combined with ocean general circulation models as a component of systematic model development. The authors have developed and tested an inverse method, using a Green’s function, to constrain general circulation models with transient tracer data. Using this method chlorofluorocarbon-11 and -12 (CFC-11 and -12) observations are combined with a North Atlantic configuration of the Miami Isopycnic Coordinate Ocean Model with 4/3° resolution.
Systematic differences can be seen between the observed CFC concentrations and prior CFC fields simulated by the model. These differences are reduced by the inversion, which determines the optimal gas transfer across the air–sea interface, accounting for uncertainties in the tracer observations. After including the effects of unresolved variability in the CFC fields, the model is found to be inconsistent with the observations because the model/data misfit slightly exceeds the error estimates. By excluding observations in waters ventilated north of the Greenland–Scotland ridge (σ 0 < 27.82 kg m−3; shallower than about 2000 m), the fit is improved, indicating that the Nordic overflows are poorly represented in the model. Some systematic differences in the model/data residuals remain and are related, in part, to excessively deep model ventilation near Rockall and deficient ventilation in the main thermocline of the eastern subtropical gyre. Nevertheless, there do not appear to be gross errors in the basin-scale model circulation. Analysis of the CFC inventory using the constrained model suggests that the North Atlantic Ocean shallower than about 2000 m was near 20% saturated in the mid-1990s. Overall, this basin is a sink to 22% of the total atmosphere-to-ocean CFC-11 flux—twice the global average value. The average water mass formation rates over the CFC transient are 7.0 and 6.0 Sv (Sv ≡ 106 m3 s−1) for subtropical mode water and subpolar mode water, respectively.
Abstract
Results from a high-resolution (~2 km) numerical simulation of the Irminger Basin during summer 2003 are presented. The focus is on the East Greenland Spill Jet, a recently discovered component of the circulation in the basin. The simulation compares well with observations of surface fields, the Denmark Strait overflow (DSO), and the hydrographic structure of typical sections in the basin. The model reveals new aspects of the circulation on scales of O(0.1–10) days and O(1–100) km.
The model Spill Jet results from the cascade of dense waters over the East Greenland shelf. Spilling can occur in various locations southwest of the strait, and it is present throughout the simulation but exhibits large variations on periods of O(0.1–10) days. The Spill Jet sometimes cannot be distinguished in the velocity field from surface eddies or from the DSO. The vorticity structure of the jet confirms its unstable nature with peak relative and tilting vorticity terms reaching twice the planetary vorticity term.
The average model Spill Jet transport is 4.9 ±1.7 Sv (1 Sv ≡ 106 m3 s−1) equatorward, about 2½ times larger than has been previously reported from a single ship transect in August 2001. Kinematic analysis of the model results suggests two different types of spilling events. In the first case (type I), a local perturbation results in dense waters descending over the shelf break into the Irminger Basin. In the second case (type II), surface cyclones associated with DSO deep domes initiate the spilling process. During summer 2003, more than half of the largest Spill Jet transport values are of type II.
Abstract
Results from a high-resolution (~2 km) numerical simulation of the Irminger Basin during summer 2003 are presented. The focus is on the East Greenland Spill Jet, a recently discovered component of the circulation in the basin. The simulation compares well with observations of surface fields, the Denmark Strait overflow (DSO), and the hydrographic structure of typical sections in the basin. The model reveals new aspects of the circulation on scales of O(0.1–10) days and O(1–100) km.
The model Spill Jet results from the cascade of dense waters over the East Greenland shelf. Spilling can occur in various locations southwest of the strait, and it is present throughout the simulation but exhibits large variations on periods of O(0.1–10) days. The Spill Jet sometimes cannot be distinguished in the velocity field from surface eddies or from the DSO. The vorticity structure of the jet confirms its unstable nature with peak relative and tilting vorticity terms reaching twice the planetary vorticity term.
The average model Spill Jet transport is 4.9 ±1.7 Sv (1 Sv ≡ 106 m3 s−1) equatorward, about 2½ times larger than has been previously reported from a single ship transect in August 2001. Kinematic analysis of the model results suggests two different types of spilling events. In the first case (type I), a local perturbation results in dense waters descending over the shelf break into the Irminger Basin. In the second case (type II), surface cyclones associated with DSO deep domes initiate the spilling process. During summer 2003, more than half of the largest Spill Jet transport values are of type II.
Abstract
The surface mixed layer (ML) governs atmosphere–ocean fluxes, and thereby affects Earth’s climate. Accurate representation of ML processes in ocean models remains a challenge, however. The O(100) m deep ML exhibits substantial horizontal thermohaline gradients, despite being near-homogenous vertically, making it an ideal location for processes that result from the nonlinearity of the equation of state, such as cabbeling and thermobaricity. Traditional approaches to investigate these processes focus on their roles in interior water-mass transformation and are ill suited to examine their influence on the ML. However, given the climatic significance of the ML, quantifying the extent to which cabbeling and thermobaricity influence the ML density field offers insight into improving ML representations in ocean models. A recent simplified equation of state of seawater allows the local effects of cabbeling and thermobaric processes in the ML to be expressed analytically as functions of the local temperature gradient and ML depth. These simplified expressions are used to estimate the extent to which cabbeling and thermobaricity contribute to local ML density differences. These estimates compare well with values calculated directly using the complete nonlinear equation of state. Cabbeling and thermobaricity predominantly influence the ML density field poleward of 30°. Mixed layer thermobaricity is basin-scale and winter intensified, while ML cabbeling is perennial and localized to intense, zonally coherent regions associated with strong temperature fronts, such as the Antarctic Circumpolar Current and the Kuroshio and Gulf Stream Extensions. For latitudes between 40° and 50° in both hemispheres, the zonally averaged effects of ML cabbeling and ML thermobaricity can contribute on the order of 10% of the local ML density difference.
Abstract
The surface mixed layer (ML) governs atmosphere–ocean fluxes, and thereby affects Earth’s climate. Accurate representation of ML processes in ocean models remains a challenge, however. The O(100) m deep ML exhibits substantial horizontal thermohaline gradients, despite being near-homogenous vertically, making it an ideal location for processes that result from the nonlinearity of the equation of state, such as cabbeling and thermobaricity. Traditional approaches to investigate these processes focus on their roles in interior water-mass transformation and are ill suited to examine their influence on the ML. However, given the climatic significance of the ML, quantifying the extent to which cabbeling and thermobaricity influence the ML density field offers insight into improving ML representations in ocean models. A recent simplified equation of state of seawater allows the local effects of cabbeling and thermobaric processes in the ML to be expressed analytically as functions of the local temperature gradient and ML depth. These simplified expressions are used to estimate the extent to which cabbeling and thermobaricity contribute to local ML density differences. These estimates compare well with values calculated directly using the complete nonlinear equation of state. Cabbeling and thermobaricity predominantly influence the ML density field poleward of 30°. Mixed layer thermobaricity is basin-scale and winter intensified, while ML cabbeling is perennial and localized to intense, zonally coherent regions associated with strong temperature fronts, such as the Antarctic Circumpolar Current and the Kuroshio and Gulf Stream Extensions. For latitudes between 40° and 50° in both hemispheres, the zonally averaged effects of ML cabbeling and ML thermobaricity can contribute on the order of 10% of the local ML density difference.
Greenland has a major influence on the atmospheric circulation of the North Atlantic-western European region, dictating the location and strength of mesoscale weather systems around the coastal seas of Greenland and directly influencing synoptic-scale weather systems both locally and downstream over Europe. High winds associated with the local weather systems can induce large air-sea fluxes of heat, moisture, and momentum in a region that is critical to the overturning of the thermohaline circulation, and thus play a key role in controlling the coupled atmosphere-ocean climate system.
The Greenland Flow Distortion Experiment (GFDex) is investigating the role of Greenland in defining the structure and predictability of both local and downstream weather systems through a program of aircraft-based observation and numerical modeling. The GFDex observational program is centered upon an aircraft-based field campaign in February and March 2007, at the dawn of the International Polar Year. Twelve missions were flown with the Facility for Airborne Atmospheric Measurements' BAe-146, based out of the Keflavik, Iceland. These included the first aircraft-based observations of a reverse tip jet event, the first aircraft-based observations of barrier winds off of southeast Greenland, two polar mesoscale cyclones, a dramatic case of lee cyclogenesis, and several targeted observation missions into areas where additional observations were predicted to improve forecasts.
In this overview of GFDex the background, aims and objectives, and facilities and logistics are described. A summary of the campaign is provided, along with some of the highlights of the experiment.
Greenland has a major influence on the atmospheric circulation of the North Atlantic-western European region, dictating the location and strength of mesoscale weather systems around the coastal seas of Greenland and directly influencing synoptic-scale weather systems both locally and downstream over Europe. High winds associated with the local weather systems can induce large air-sea fluxes of heat, moisture, and momentum in a region that is critical to the overturning of the thermohaline circulation, and thus play a key role in controlling the coupled atmosphere-ocean climate system.
The Greenland Flow Distortion Experiment (GFDex) is investigating the role of Greenland in defining the structure and predictability of both local and downstream weather systems through a program of aircraft-based observation and numerical modeling. The GFDex observational program is centered upon an aircraft-based field campaign in February and March 2007, at the dawn of the International Polar Year. Twelve missions were flown with the Facility for Airborne Atmospheric Measurements' BAe-146, based out of the Keflavik, Iceland. These included the first aircraft-based observations of a reverse tip jet event, the first aircraft-based observations of barrier winds off of southeast Greenland, two polar mesoscale cyclones, a dramatic case of lee cyclogenesis, and several targeted observation missions into areas where additional observations were predicted to improve forecasts.
In this overview of GFDex the background, aims and objectives, and facilities and logistics are described. A summary of the campaign is provided, along with some of the highlights of the experiment.