Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: T. Whitcomb x
- All content x
Abstract
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users.
The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.
Abstract
The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open-source terms or to credentialed users.
The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the United States. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multiagency development of coupled modeling systems; controlled experimentation and testing; and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NAVGEM), the Hybrid Coordinate Ocean Model (HYCOM), and the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and the Goddard Earth Observing System Model, version 5 (GEOS-5), atmospheric general circulation model.
Abstract
A data assimilation system (DAS) is described for global atmospheric reanalysis from 0- to 100-km altitude. We apply it to the 2014 austral winter of the Deep Propagating Gravity Wave Experiment (DEEPWAVE), an international field campaign focused on gravity wave dynamics from 0 to 100 km, where an absence of reanalysis above 60 km inhibits research. Four experiments were performed from April to September 2014 and assessed for reanalysis skill above 50 km. A four-dimensional variational (4DVAR) run specified initial background error covariances statically. A hybrid-4DVAR (HYBRID) run formed background error covariances from an 80-member forecast ensemble blended with a static estimate. Each configuration was run at low and high horizontal resolution. In addition to operational observations below 50 km, each experiment assimilated
Abstract
A data assimilation system (DAS) is described for global atmospheric reanalysis from 0- to 100-km altitude. We apply it to the 2014 austral winter of the Deep Propagating Gravity Wave Experiment (DEEPWAVE), an international field campaign focused on gravity wave dynamics from 0 to 100 km, where an absence of reanalysis above 60 km inhibits research. Four experiments were performed from April to September 2014 and assessed for reanalysis skill above 50 km. A four-dimensional variational (4DVAR) run specified initial background error covariances statically. A hybrid-4DVAR (HYBRID) run formed background error covariances from an 80-member forecast ensemble blended with a static estimate. Each configuration was run at low and high horizontal resolution. In addition to operational observations below 50 km, each experiment assimilated