Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Tapash Das x
  • All content x
Clear All Modify Search
Julie A. Vano, Tapash Das, and Dennis P. Lettenmaier

Abstract

The Colorado River is the primary water source for much of the rapidly growing southwestern United States. Recent studies have projected reductions in Colorado River flows from less than 10% to almost 50% by midcentury because of climate change—a range that has clouded potential management responses. These differences in projections are attributable to variations in climate model projections but also to differing land surface model (LSM) sensitivities. This second contribution to uncertainty—specifically, variations in LSM runoff change with respect to precipitation (elasticities) and temperature (sensitivities)—are evaluated here through comparisons of multidecadal simulations from five commonly used LSMs (Catchment, Community Land Model, Noah, Sacramento Soil Moisture Accounting model, and Variable Infiltration Capacity model) all applied over the Colorado River basin at ⅛° latitude by longitude spatial resolution. The annual elasticity of modeled runoff (fractional change in annual runoff divided by fractional change in annual precipitation) at Lees Ferry ranges from two to six for the different LSMs. Elasticities generally are higher in lower precipitation and/or runoff regimes; hence, the highest values are for models biased low in runoff production, and the range of elasticities is reduced to two to three when adjusted to current runoff climatology. Annual temperature sensitivities (percent change in annual runoff per degree change in annual temperature) range from declines of 2% to as much as 9% per degree Celsius increase at Lees Ferry. For some LSMs, small areas, primarily at midelevation, have increasing runoff with increasing temperature; however, on a spatial basis, most sensitivities are negative.

Restricted access
Julie A. Vano, Bradley Udall, Daniel R. Cayan, Jonathan T. Overpeck, Levi D. Brekke, Tapash Das, Holly C. Hartmann, Hugo G. Hidalgo, Martin Hoerling, Gregory J. McCabe, Kiyomi Morino, Robert S. Webb, Kevin Werner, and Dennis P. Lettenmaier

The Colorado River is the primary water source for more than 30 million people in the United States and Mexico. Recent studies that project streamf low changes in the Colorado River all project annual declines, but the magnitude of the projected decreases range from less than 10% to 45% by the mid-twenty-first century. To understand these differences, we address the questions the management community has raised: Why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted? We identify four major sources of disparities among studies that arise from both methodological and model differences. In order of importance, these are differences in 1) the global climate models (GCMs) and emission scenarios used; 2) the ability of land surface and atmospheric models to simulate properly the high-elevation runoff source areas; 3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and 4) the methods used to statistically downscale GCM scenarios. In accounting for these differences, there is substantial evidence across studies that future Colorado River streamflow will be reduced under the current trajectories of anthropogenic greenhouse gas emissions because of a combination of strong temperature-induced runoff curtailment and reduced annual precipitation. Reconstructions of preinstrumental streamflows provide additional insights; the greatest risk to Colorado River streamf lows is a multidecadal drought, like that observed in paleoreconstructions, exacerbated by a steady reduction in flows due to climate change. This could result in decades of sustained streamflows much lower than have been observed in the ~100 years of instrumental record.

Full access
Céline Bonfils, Benjamin D. Santer, David W. Pierce, Hugo G. Hidalgo, Govindasamy Bala, Tapash Das, Tim P. Barnett, Daniel R. Cayan, Charles Doutriaux, Andrew W. Wood, Art Mirin, and Toru Nozawa

Abstract

Large changes in the hydrology of the western United States have been observed since the mid-twentieth century. These include a reduction in the amount of precipitation arriving as snow, a decline in snowpack at low and midelevations, and a shift toward earlier arrival of both snowmelt and the centroid (center of mass) of streamflows. To project future water supply reliability, it is crucial to obtain a better understanding of the underlying cause or causes for these changes. A regional warming is often posited as the cause of these changes without formal testing of different competitive explanations for the warming. In this study, a rigorous detection and attribution analysis is performed to determine the causes of the late winter/early spring changes in hydrologically relevant temperature variables over mountain ranges of the western United States. Natural internal climate variability, as estimated from two long control climate model simulations, is insufficient to explain the rapid increase in daily minimum and maximum temperatures, the sharp decline in frost days, and the rise in degree-days above 0°C (a simple proxy for temperature-driven snowmelt). These observed changes are also inconsistent with the model-predicted responses to variability in solar irradiance and volcanic activity. The observations are consistent with climate simulations that include the combined effects of anthropogenic greenhouse gases and aerosols. It is found that, for each temperature variable considered, an anthropogenic signal is identifiable in observational fields. The results are robust to uncertainties in model-estimated fingerprints and natural variability noise, to the choice of statistical downscaling method, and to various processing options in the detection and attribution method.

Full access
David W. Pierce, Daniel R. Cayan, Tapash Das, Edwin P. Maurer, Norman L. Miller, Yan Bao, M. Kanamitsu, Kei Yoshimura, Mark A. Snyder, Lisa C. Sloan, Guido Franco, and Mary Tyree

Abstract

Climate model simulations disagree on whether future precipitation will increase or decrease over California, which has impeded efforts to anticipate and adapt to human-induced climate change. This disagreement is explored in terms of daily precipitation frequency and intensity. It is found that divergent model projections of changes in the incidence of rare heavy (>60 mm day−1) daily precipitation events explain much of the model disagreement on annual time scales, yet represent only 0.3% of precipitating days and 9% of annual precipitation volume. Of the 25 downscaled model projections examined here, 21 agree that precipitation frequency will decrease by the 2060s, with a mean reduction of 6–14 days yr−1. This reduces California's mean annual precipitation by about 5.7%. Partly offsetting this, 16 of the 25 projections agree that daily precipitation intensity will increase, which accounts for a model average 5.3% increase in annual precipitation. Between these conflicting tendencies, 12 projections show drier annual conditions by the 2060s and 13 show wetter. These results are obtained from 16 global general circulation models downscaled with different combinations of dynamical methods [Weather Research and Forecasting (WRF), Regional Spectral Model (RSM), and version 3 of the Regional Climate Model (RegCM3)] and statistical methods [bias correction with spatial disaggregation (BCSD) and bias correction with constructed analogs (BCCA)], although not all downscaling methods were applied to each global model. Model disagreements in the projected change in occurrence of the heaviest precipitation days (>60 mm day−1) account for the majority of disagreement in the projected change in annual precipitation, and occur preferentially over the Sierra Nevada and Northern California. When such events are excluded, nearly twice as many projections show drier future conditions.

Full access
David W. Pierce, Tim P. Barnett, Hugo G. Hidalgo, Tapash Das, Céline Bonfils, Benjamin D. Santer, Govindasamy Bala, Michael D. Dettinger, Daniel R. Cayan, Art Mirin, Andrew W. Wood, and Toru Nozawa

Abstract

Observations show snowpack has declined across much of the western United States over the period 1950–99. This reduction has important social and economic implications, as water retained in the snowpack from winter storms forms an important part of the hydrological cycle and water supply in the region. A formal model-based detection and attribution (D–A) study of these reductions is performed. The detection variable is the ratio of 1 April snow water equivalent (SWE) to water-year-to-date precipitation (P), chosen to reduce the effect of P variability on the results. Estimates of natural internal climate variability are obtained from 1600 years of two control simulations performed with fully coupled ocean–atmosphere climate models. Estimates of the SWE/P response to anthropogenic greenhouse gases, ozone, and some aerosols are taken from multiple-member ensembles of perturbation experiments run with two models. The D–A shows the observations and anthropogenically forced models have greater SWE/P reductions than can be explained by natural internal climate variability alone. Model-estimated effects of changes in solar and volcanic forcing likewise do not explain the SWE/P reductions. The mean model estimate is that about half of the SWE/P reductions observed in the west from 1950 to 1999 are the result of climate changes forced by anthropogenic greenhouse gases, ozone, and aerosols.

Full access