Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Taro Shinoda x
  • Refine by Access: All Content x
Clear All Modify Search
Hidetaka Hirata, Ryuichi Kawamura, Masaya Kato, and Taro Shinoda

Abstract

The active roles of sensible heat supply from the Kuroshio/Kuroshio Extension in the rapid development of an extratropical cyclone, which occurred in the middle of January 2013, were examined by using a regional cloud-resolving model. In this study, a control experiment and three sensitivity experiments without sensible and latent heat fluxes from the warm currents were conducted. When the cyclone intensified, sensible heat fluxes from these currents become prominent around the cold conveyor belt (CCB) in the control run. Comparisons among the four runs revealed that the sensible heat supply facilitates deepening of the cyclone’s central pressure, CCB development, and enhanced latent heating over the bent-back front. The sensible heat supply enhances convectively unstable conditions within the atmospheric boundary layer along the CCB. The increased convective instability is released by the forced ascent associated with frontogenesis around the bent-back front, eventually promoting updraft and resultant latent heating. Additionally, the sensible heating leads to an increase in the water vapor content of the saturated air related to the CCB through an increase in the saturation mixing ratio. This increased water vapor content reinforces the moisture flux convergence at the bent-back front, contributing to the activation of latent heating. Previous research has proposed a positive feedback process between the CCB and latent heating over the bent-back front in terms of moisture supply from warm currents. Considering the above two effects of the sensible heat supply, this study revises the positive feedback process.

Open access
Hidetaka Hirata, Ryuichi Kawamura, Masaya Kato, and Taro Shinoda

Abstract

This study focused on an explosive cyclone migrating along the southern periphery of the Kuroshio/Kuroshio Extension in the middle of January 2013 and examined how those warm currents played an active role in the rapid development of the cyclone using a high-resolution coupled atmosphere–ocean regional model. The evolutions of surface fronts of the simulated cyclone resemble the Shapiro–Keyser model. At the time of the maximum deepening rate, strong mesoscale diabatic heating areas appear over the bent-back front and the warm front east of the cyclone center. Diabatic heating over the bent-back front and the eastern warm front is mainly induced by the condensation of moisture imported by the cold conveyor belt (CCB) and the warm conveyor belt (WCB), respectively. The dry air parcels transported by the CCB can receive large amounts of moisture from the warm currents, whereas the very humid air parcels transported by the WCB can hardly be modified by those currents. The well-organized nature of the CCB plays a key role not only in enhancing surface evaporation from the warm currents but also in importing the evaporated vapor into the bent-back front. The imported vapor converges at the bent-back front, leading to latent heat release. The latent heating facilitates the cyclone’s development through the production of positive potential vorticity in the lower troposphere. Its deepening can, in turn, reinforce the CCB. In the presence of a favorable synoptic-scale environment, such a positive feedback process can lead to the rapid intensification of a cyclone over warm currents.

Full access
Satoshi Endo, Taro Shinoda, Tetsuya Hiyama, Hiroshi Uyeda, Kenji Nakamura, Hiroki Tanaka, and Kazuhisa Tsuboki

Abstract

The purpose of this study is to clarify the characteristics of the convective boundary layer (CBL) over a humid terrestrial area, the Huaihe River basin in China, which is covered by a large, nearly flat plain with uniform farmland. Data were collected in early summer 2004 using a 32-m flux tower and a 1290-MHz wind profiler radar. When mature wheat fields or bare fields dominated (the first period), the sensible heat flux (SHF) from the land surface was nearly equal to the latent heat flux (LHF). After vegetation changed to paddy fields (the second period), the LHF was much larger than the SHF. Two clear days from the first and second periods were selected and are referred to as the dry case and wet case, respectively. For the dry case, a deep CBL developed rapidly from the early morning, and thermal updrafts in the CBL were vigorous. For the wet case, a shallow CBL developed slowly from late morning, and thermals were weak. To study the thermodynamic process in the CBL, a large-eddy simulation (LES) was conducted. The simulation adequately reproduced the surface heat flux and the CBL development for both the dry case and the wet case. For the dry case, sensible heat contributed to nearly all of the buoyancy flux. In contrast, for the wet case, heat and moisture made equal contributions. The large contribution of moisture to the buoyancy is one of the main characteristics of the CBL over humid terrestrial areas.

Full access
Takeharu Kouketsu, Hiroshi Uyeda, Tadayasu Ohigashi, Mariko Oue, Hiroto Takeuchi, Taro Shinoda, Kazuhisa Tsuboki, Mamoru Kubo, and Ken-ichiro Muramoto

Abstract

A fuzzy-logic-based hydrometeor classification (HC) method for X-band polarimetric radar (X-pol), which is suitable for observation of solid hydrometeors under moist environments producing little or no hail, is constructed and validated. This HC method identifies the most likely hydrometeor at each radar sampling volume from eight categories: 1) drizzle, 2) rain, 3) wet snow aggregates, 4) dry snow aggregates, 5) ice crystals, 6) dry graupel, 7) wet graupel, and 8) rain–hail mixture. Membership functions are defined on the basis of previous studies. The HC method uses radar reflectivity Z h, differential reflectivity Z dr, specific differential phase K dp, and correlation coefficient ρ hv as its main inputs, and temperature with some consideration of relative humidity as supplemental information. The method is validated against ground and in situ observations of solid hydrometeors (dry graupel, dry snow aggregates, and ice crystals) under a moist environment. Observational data from a ground-based imaging system are used to validate the HC method for dry graupel and dry snow aggregates. For dry snow aggregates and ice crystals, the HC method is validated using simultaneous observations from a balloonborne instrument [hydrometeor videosonde (HYVIS)] and an X-pol range–height indicator directed toward the HYVIS. The HC method distinguishes effectively between dry graupel, dry snow aggregates, and ice crystals, and is therefore valid for HC under moist environments.

Full access