Search Results
You are looking at 1 - 8 of 8 items for
- Author or Editor: Tetsuya Hiyama x
- Refine by Access: All Content x
Abstract
This study examined the dominant structure and characteristics of synoptic-scale (2–8-day periods) waves over northern Eurasia during 40 summer seasons (June–August, 1979–2018). The synoptic-scale wave patterns are isolated using an extended empirical orthogonal function (EEOF) analysis on the 300-hPa geopotential height anomalies, and a composite based on atmospheric circulation fields and gridded precipitation product. The wave patterns are classified into two types from two pairs of EEOF modes. These two different wave types are defined as the polar frontal (PF) mode and Arctic frontal (AF) mode, respectively. The PF-mode waves are initiated in the North Atlantic sector to the west of the British Isles. They propagate eastward across Siberia into the North Pacific, and produce precipitation mainly over the Eurasian polar frontal zone. The AF-mode wave train arcs along the climatological Arctic frontal zone (AFZ). The AF-mode waves originate near the Scandinavian Peninsula. Their eastward passage brings precipitation along the AFZ. The development of the synoptic-scale waves is reflected by unique background conditions over northern Eurasia. The lower-tropospheric baroclinicity in southern Siberia and central Asia favored the baroclinic growth of the PF-mode waves. The AF-mode waves are trapped in the well-organized baroclinic zone along the north coast of the Eurasian continent. The baroclinic zone is coupled with a band of large meridional gradient of potential vorticity in the upper troposphere, suggesting that this band acts as a waveguide for the AF-mode waves.
Significance Statement
This study examines the synoptic-scale waves in the 2–8-day range of time scales over northern Eurasia during summer. The synoptic-scale waves are categorized into two distinct types at different latitude bands by the EEOF analysis on the 300-hPa z anomalies. They are defined as polar frontal (PF) mode and Arctic frontal (AF) mode. Then the EEOF-based composite analysis is conducted to detect the large-scale circulation anomalies associated with the propagation of different types of synoptic-scale waves. The structure and characteristics are examined. The roles of the mean background conditions in the development and propagation of the respective types are discussed. The behavior of these wave disturbances as rain-producing weather systems is also examined.
Abstract
This study examined the dominant structure and characteristics of synoptic-scale (2–8-day periods) waves over northern Eurasia during 40 summer seasons (June–August, 1979–2018). The synoptic-scale wave patterns are isolated using an extended empirical orthogonal function (EEOF) analysis on the 300-hPa geopotential height anomalies, and a composite based on atmospheric circulation fields and gridded precipitation product. The wave patterns are classified into two types from two pairs of EEOF modes. These two different wave types are defined as the polar frontal (PF) mode and Arctic frontal (AF) mode, respectively. The PF-mode waves are initiated in the North Atlantic sector to the west of the British Isles. They propagate eastward across Siberia into the North Pacific, and produce precipitation mainly over the Eurasian polar frontal zone. The AF-mode wave train arcs along the climatological Arctic frontal zone (AFZ). The AF-mode waves originate near the Scandinavian Peninsula. Their eastward passage brings precipitation along the AFZ. The development of the synoptic-scale waves is reflected by unique background conditions over northern Eurasia. The lower-tropospheric baroclinicity in southern Siberia and central Asia favored the baroclinic growth of the PF-mode waves. The AF-mode waves are trapped in the well-organized baroclinic zone along the north coast of the Eurasian continent. The baroclinic zone is coupled with a band of large meridional gradient of potential vorticity in the upper troposphere, suggesting that this band acts as a waveguide for the AF-mode waves.
Significance Statement
This study examines the synoptic-scale waves in the 2–8-day range of time scales over northern Eurasia during summer. The synoptic-scale waves are categorized into two distinct types at different latitude bands by the EEOF analysis on the 300-hPa z anomalies. They are defined as polar frontal (PF) mode and Arctic frontal (AF) mode. Then the EEOF-based composite analysis is conducted to detect the large-scale circulation anomalies associated with the propagation of different types of synoptic-scale waves. The structure and characteristics are examined. The roles of the mean background conditions in the development and propagation of the respective types are discussed. The behavior of these wave disturbances as rain-producing weather systems is also examined.
Abstract
A multilayered turbulent transport model for the surface layer based on collisions between atmospheric layers is developed. The model can represent the average and perturbed components of turbulence relatively well, for both bare-soil and canopy-covered surfaces. The number of collisions increases linearly with height for a bare-soil surface, and decreases as the leaf-area density increases within the canopy layer. The intermittent nature of turbulent motion is reproduced in the model, even though the model is one-dimensional. The number of collisions increasing with height may cause the intermittent nature of the turbulence and may also relate to the gust motions for canopy flow; such gusts transfer large momentum downward intermittently and cause a secondary maximum in wind velocity in the lower layer within the canopy. In other words, the model can include the large-eddy effect by considering the different number of collisions among layers. Turbulence data measured with an ultrasonic anemometer at 10 Hz in the field were used as model input; plausible results were obtained. The model can represent the overall characteristics of turbulence in the surface layer.
Abstract
A multilayered turbulent transport model for the surface layer based on collisions between atmospheric layers is developed. The model can represent the average and perturbed components of turbulence relatively well, for both bare-soil and canopy-covered surfaces. The number of collisions increases linearly with height for a bare-soil surface, and decreases as the leaf-area density increases within the canopy layer. The intermittent nature of turbulent motion is reproduced in the model, even though the model is one-dimensional. The number of collisions increasing with height may cause the intermittent nature of the turbulence and may also relate to the gust motions for canopy flow; such gusts transfer large momentum downward intermittently and cause a secondary maximum in wind velocity in the lower layer within the canopy. In other words, the model can include the large-eddy effect by considering the different number of collisions among layers. Turbulence data measured with an ultrasonic anemometer at 10 Hz in the field were used as model input; plausible results were obtained. The model can represent the overall characteristics of turbulence in the surface layer.
Abstract
The Loess Plateau of China consists of dissected flat tablelands with steep gullies. To evaluate the effect of topography on local circulation and cumulus generation over the Loess Plateau, numerical simulations of atmospheric boundary layer (ABL) development were conducted using a cloud-resolving nonhydrostatic model. Two types of numerical simulation were carried out under two sets of bottom boundary conditions: real terrain and flat terrain. The differences in ABL development and cumulus generation between the flat- and real-terrain conditions are described and the local circulation structures induced by ABL development are illustrated. More cumulus clouds were generated over the real terrain than over the flat terrain. In the real-terrain case, large amounts of cumulus cloud were generated on the windward slopes and on the edge of the tableland, with updrafts caused by thermal generation and a local circulation developing with horizontal and vertical scales of several kilometers. Cumulus clouds clearly developed at the top of the ABL because the water vapor is nonhomogeneously lifted by the local circulation on windward slopes and on edge of the tableland. Thus, the topography of the Loess Plateau plays an important role in cumulus generation.
Abstract
The Loess Plateau of China consists of dissected flat tablelands with steep gullies. To evaluate the effect of topography on local circulation and cumulus generation over the Loess Plateau, numerical simulations of atmospheric boundary layer (ABL) development were conducted using a cloud-resolving nonhydrostatic model. Two types of numerical simulation were carried out under two sets of bottom boundary conditions: real terrain and flat terrain. The differences in ABL development and cumulus generation between the flat- and real-terrain conditions are described and the local circulation structures induced by ABL development are illustrated. More cumulus clouds were generated over the real terrain than over the flat terrain. In the real-terrain case, large amounts of cumulus cloud were generated on the windward slopes and on the edge of the tableland, with updrafts caused by thermal generation and a local circulation developing with horizontal and vertical scales of several kilometers. Cumulus clouds clearly developed at the top of the ABL because the water vapor is nonhomogeneously lifted by the local circulation on windward slopes and on edge of the tableland. Thus, the topography of the Loess Plateau plays an important role in cumulus generation.
Abstract
This study investigated atmospheric water cycles over several time scales to understand the maintenance processes that control heavy precipitation over the islands of the Maritime Continent. Large island regions can be divided into land, coastal, and ocean areas based on the characteristics of both the hydrologic cycle and the diurnal variation in precipitation. Within the Maritime Continent, the major islands of Borneo and New Guinea exhibit different hydrologic cycles. Large-scale circulation variations, such as the seasonal cycle and the Madden–Julian oscillation, have a lesser effect on the hydrologic cycle over Borneo than over New Guinea because the effects depend on their shapes and locations. The impact of diurnal variations on both regional-scale circulation and water exchange between land and coastal regions is pronounced over both islands. The recycling ratio of precipitation, which can be related to stronger diurnal variation in the atmospheric water cycle that results from enhanced evapotranspiration over tropical rain forests, is higher over Borneo than over New Guinea.
Abstract
This study investigated atmospheric water cycles over several time scales to understand the maintenance processes that control heavy precipitation over the islands of the Maritime Continent. Large island regions can be divided into land, coastal, and ocean areas based on the characteristics of both the hydrologic cycle and the diurnal variation in precipitation. Within the Maritime Continent, the major islands of Borneo and New Guinea exhibit different hydrologic cycles. Large-scale circulation variations, such as the seasonal cycle and the Madden–Julian oscillation, have a lesser effect on the hydrologic cycle over Borneo than over New Guinea because the effects depend on their shapes and locations. The impact of diurnal variations on both regional-scale circulation and water exchange between land and coastal regions is pronounced over both islands. The recycling ratio of precipitation, which can be related to stronger diurnal variation in the atmospheric water cycle that results from enhanced evapotranspiration over tropical rain forests, is higher over Borneo than over New Guinea.
Abstract
This study evaluated the effect of recent eastern Siberian land surface changes, such as water surface expansion, on water-energy fluxes and precipitation and focused on land surface parameters using a three-dimensional atmospheric model [the Japan Meteorological Agency Nonhydrostatic model (JMA-NHM)]. Five parameters were set (viz., surface albedo, evaporative efficiency, roughness length, heat capacity, and thermal conductivity), and a response of evaporation and precipitation was evaluated. Increased precipitation corresponded to 75% of the increased evaporation on interparameter average, indicating strong land–atmosphere coupling. Water-energy flux and precipitation responses to water surface expansion were evaluated by two methods: JMA-NHM and the parameter sensitivity method. The latter method used a linear combination of parameter sensitivity on the fluxes and precipitation and parameter changes with land surface change. JMA-NHM demonstrated an increase in evaporation and precipitation and a decrease in downward shortwave radiation with low-level cloud increases. The parameter sensitivity method gave the same order as JMA-NHM in the estimation. This method has minimal calculation cost; thus, water-energy flux and precipitation response with further water surface expansion and decreases in forest area were simulated, producing various land surface data. The enhancement of the precipitation response to evaporation was weak for further water surface expansion in the largely expanded water surface area; however, the ratio increased dramatically for the small water surface expanding area, indicating intense water cycle enhancement at the beginning of water surface expansion. Although grassland formation from forest has minimal impact, if incoming downward shortwave radiation were to increase because of the disappearance of the forest shading effect and the water surface formed by permafrost melting, the water cycle would be enhanced intensely.
Abstract
This study evaluated the effect of recent eastern Siberian land surface changes, such as water surface expansion, on water-energy fluxes and precipitation and focused on land surface parameters using a three-dimensional atmospheric model [the Japan Meteorological Agency Nonhydrostatic model (JMA-NHM)]. Five parameters were set (viz., surface albedo, evaporative efficiency, roughness length, heat capacity, and thermal conductivity), and a response of evaporation and precipitation was evaluated. Increased precipitation corresponded to 75% of the increased evaporation on interparameter average, indicating strong land–atmosphere coupling. Water-energy flux and precipitation responses to water surface expansion were evaluated by two methods: JMA-NHM and the parameter sensitivity method. The latter method used a linear combination of parameter sensitivity on the fluxes and precipitation and parameter changes with land surface change. JMA-NHM demonstrated an increase in evaporation and precipitation and a decrease in downward shortwave radiation with low-level cloud increases. The parameter sensitivity method gave the same order as JMA-NHM in the estimation. This method has minimal calculation cost; thus, water-energy flux and precipitation response with further water surface expansion and decreases in forest area were simulated, producing various land surface data. The enhancement of the precipitation response to evaporation was weak for further water surface expansion in the largely expanded water surface area; however, the ratio increased dramatically for the small water surface expanding area, indicating intense water cycle enhancement at the beginning of water surface expansion. Although grassland formation from forest has minimal impact, if incoming downward shortwave radiation were to increase because of the disappearance of the forest shading effect and the water surface formed by permafrost melting, the water cycle would be enhanced intensely.
Abstract
The purpose of this study is to clarify the characteristics of the convective boundary layer (CBL) over a humid terrestrial area, the Huaihe River basin in China, which is covered by a large, nearly flat plain with uniform farmland. Data were collected in early summer 2004 using a 32-m flux tower and a 1290-MHz wind profiler radar. When mature wheat fields or bare fields dominated (the first period), the sensible heat flux (SHF) from the land surface was nearly equal to the latent heat flux (LHF). After vegetation changed to paddy fields (the second period), the LHF was much larger than the SHF. Two clear days from the first and second periods were selected and are referred to as the dry case and wet case, respectively. For the dry case, a deep CBL developed rapidly from the early morning, and thermal updrafts in the CBL were vigorous. For the wet case, a shallow CBL developed slowly from late morning, and thermals were weak. To study the thermodynamic process in the CBL, a large-eddy simulation (LES) was conducted. The simulation adequately reproduced the surface heat flux and the CBL development for both the dry case and the wet case. For the dry case, sensible heat contributed to nearly all of the buoyancy flux. In contrast, for the wet case, heat and moisture made equal contributions. The large contribution of moisture to the buoyancy is one of the main characteristics of the CBL over humid terrestrial areas.
Abstract
The purpose of this study is to clarify the characteristics of the convective boundary layer (CBL) over a humid terrestrial area, the Huaihe River basin in China, which is covered by a large, nearly flat plain with uniform farmland. Data were collected in early summer 2004 using a 32-m flux tower and a 1290-MHz wind profiler radar. When mature wheat fields or bare fields dominated (the first period), the sensible heat flux (SHF) from the land surface was nearly equal to the latent heat flux (LHF). After vegetation changed to paddy fields (the second period), the LHF was much larger than the SHF. Two clear days from the first and second periods were selected and are referred to as the dry case and wet case, respectively. For the dry case, a deep CBL developed rapidly from the early morning, and thermal updrafts in the CBL were vigorous. For the wet case, a shallow CBL developed slowly from late morning, and thermals were weak. To study the thermodynamic process in the CBL, a large-eddy simulation (LES) was conducted. The simulation adequately reproduced the surface heat flux and the CBL development for both the dry case and the wet case. For the dry case, sensible heat contributed to nearly all of the buoyancy flux. In contrast, for the wet case, heat and moisture made equal contributions. The large contribution of moisture to the buoyancy is one of the main characteristics of the CBL over humid terrestrial areas.
Abstract
Southeast Asian tropical rain forests in the Maritime Continent are among the most important biomes in terms of global and regional water cycling. How land use and land cover change (LULCC) relating to deforestation and forest degradation alter the local hydroclimate over the island of Borneo is examined using the Weather Research and Forecasting (WRF) Model with an appropriate land surface model for describing the influence of changes in the vegetation status on the atmosphere. The model was validated against precipitation data from Tropical Rainfall Measuring Mission (TRMM) satellite 3B42 measurements. A main novelty in this analysis is that the diurnal cycle of precipitation over the island, which is a dominant climatic characteristic of the Maritime Continent, was successfully reproduced. To clarify the impact of the LULCC on the precipitation regimes over the island, numerical experiments were performed with the model that demonstrated the following. Deforestation that generates high albedo areas, such as bare lands, would induce a reduction in precipitation because of reductions in evapotranspiration, convection, and horizontal atmospheric moisture inflow. On the other hand, a decrease in evapotranspiration efficiency without changing the surface albedo could increase precipitation due to an increase in convection and horizontal atmospheric moisture inflow in compensation for the decrease in evapotranspiration. In detail, on the Maritime Continent, through changes in the land surface heating process and land–sea breeze circulation, the LULCC would impact the amplitude of the diurnal precipitation cycle in each region as defined according to the distance from the coast, resulting in changes in the precipitation regimes over the island.
Abstract
Southeast Asian tropical rain forests in the Maritime Continent are among the most important biomes in terms of global and regional water cycling. How land use and land cover change (LULCC) relating to deforestation and forest degradation alter the local hydroclimate over the island of Borneo is examined using the Weather Research and Forecasting (WRF) Model with an appropriate land surface model for describing the influence of changes in the vegetation status on the atmosphere. The model was validated against precipitation data from Tropical Rainfall Measuring Mission (TRMM) satellite 3B42 measurements. A main novelty in this analysis is that the diurnal cycle of precipitation over the island, which is a dominant climatic characteristic of the Maritime Continent, was successfully reproduced. To clarify the impact of the LULCC on the precipitation regimes over the island, numerical experiments were performed with the model that demonstrated the following. Deforestation that generates high albedo areas, such as bare lands, would induce a reduction in precipitation because of reductions in evapotranspiration, convection, and horizontal atmospheric moisture inflow. On the other hand, a decrease in evapotranspiration efficiency without changing the surface albedo could increase precipitation due to an increase in convection and horizontal atmospheric moisture inflow in compensation for the decrease in evapotranspiration. In detail, on the Maritime Continent, through changes in the land surface heating process and land–sea breeze circulation, the LULCC would impact the amplitude of the diurnal precipitation cycle in each region as defined according to the distance from the coast, resulting in changes in the precipitation regimes over the island.