Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Théo Vischel x
  • All content x
Clear All Modify Search
Catherine Wilcox, Claire Aly, Théo Vischel, Gérémy Panthou, Juliette Blanchet, Guillaume Quantin, and Thierry Lebel

Abstract

Stochastic rainfall generators aim to reproduce the main statistical features of rainfall at small spatial and temporal scales. The simulated synthetic rainfall series are recognized as suitable for use with impact analysis in water, agricultural, and ecological management. Convection-driven precipitation, dominant in certain regions of the world such as the intertropical belt regions, presents properties that require specific consideration when modeling: (i) strong rainfall intermittency, (ii) high variability of intensities within storms, (iii) strong spatiotemporal correlation of intensities, and (iv) marked seasonality of storm properties. In this article, improvements for an existing stochastic generator of rainfall fields that models convective storms are presented. Notable novelties include (i) the ability to model precipitation event timing, (ii) an improved temporal disaggregation scheme representing the rainfall distribution at subevent scales, and (iii) using covariates to reflect seasonal changes in precipitation occurrence and marginal distribution parameters. Extreme values are explicitly considered in the distribution of storm event intensities. The simulator is calibrated and validated using 28 years of 5-min precipitation data from the 30-rain-gauge AMMA-CATCH network in the Sahelian region of southwest Niger. Both large propagative systems and smaller local convective precipitation are generated. Results show that simulator improvements coherently represent the local climatology. The simulator can generate scenarios for impact studies with accurate representation of convective precipitation characteristics.

Restricted access
Catherine A Senior, John H Marsham, Sègoléne Berthou, Laura E Burgin, Sonja S Folwell, Elizabeth J Kendon, Cornelia M Klein, Richard G Jones, Neha Mittal, David P Rowell, Lorenzo Tomassini, Thèo Vischel, Bernd Becker, Cathryn E Birch, Julia Crook, Andrew J Dougill, Declan L Finney, Richard J Graham, Neil C G Hart, Christopher D Jack, Lawrence S Jackson, Rachel James, Bettina Koelle, Herbert Misiani, Brenda Mwalukanga, Douglas J Parker, Rachel A Stratton, Christopher M Taylor, Simon O Tucker, Caroline M Wainwright, Richard Washington, and Martin R Willet

Abstract

Pan-Africa convection-permitting regional climate model simulations have been performed to study the impact of high resolution and the explicit representation of atmospheric moist convection on the present and future climate of Africa. These unique simulations have allowed European and African climate scientists to understand the critical role that the representation of convection plays in the ability of a contemporary climate model to capture climate and climate change, including many impact relevant aspects such as rainfall variability and extremes. There are significant improvements in not only the small-scale characteristics of rainfall such as its intensity and diurnal cycle, but also in the large-scale circulation. Similarly effects of explicit convection affect not only projected changes in rainfall extremes, dry-spells and high winds, but also continental-scale circulation and regional rainfall accumulations. The physics underlying such differences are in many cases expected to be relevant to all models that use parameterized convection. In some cases physical understanding of small-scale change mean that we can provide regional decision makers with new scales of information across a range of sectors. We demonstrate the potential value of these simulations both as scientific tools to increase climate process understanding and, when used with other models, for direct user applications. We describe how these ground-breaking simulations have been achieved under the UK Government’s Future Climate for Africa Programme. We anticipate a growing number of such simulations, which we advocate should become a routine component of climate projection, and encourage international co-ordination of such computationally, and human-resource expensive simulations as effectively as possible.

Full access