Search Results

You are looking at 1 - 10 of 17 items for

  • Author or Editor: Thomas Adams x
  • Refine by Access: All Content x
Clear All Modify Search
Thomas C. Adams
Full access
Thomas E. Adams III
and
Randel Dymond

Abstract

This study presents findings from a real-time forecast experiment that compares legacy deterministic hydrologic stage forecasts to ensemble mean and median stage forecasts from the NOAA/NWS Meteorological Model-Based Ensemble Forecast System (MMEFS). The NOAA/NWS Ohio River Forecast Center (OHRFC) area of responsibility defines the experimental region. Real-time forecasts from subbasins at 54 forecast point locations, ranging in drainage area, geographic location within the Ohio River valley, and watershed response time serve as the basis for analyses. In the experiment, operational hydrologic forecasts, with a 24-h quantitative precipitation forecast (QPF) and forecast temperatures, are compared to MMEFS hydrologic ensemble mean and median forecasts, with model forcings from the NOAA/NWS National Centers for Environmental Prediction (NCEP) North American Ensemble Forecast System (NAEFS), over the period from 30 November 2010 through 24 May 2012. Experiments indicate that MMEFS ensemble mean and median forecasts exhibit lower errors beginning at about lead time 90 h when forecasts at all locations are aggregated. With fast response basins that peak at ≤24 h, ensemble mean and median forecasts exhibit lower errors much earlier, beginning at about lead time 36 h, which suggests the viability of using MMEFS ensemble forecasts as an alternative to OHRFC legacy forecasts. Analyses show that ensemble median forecasts generally exhibit smaller errors than ensemble mean forecasts for all stage ranges. Verification results suggest that OHRFC MMEFS NAEFS ensemble forecasts are reasonable, but needed improvements are identified.

Full access
Yu Zhang
,
Thomas Adams
, and
James V. Bonta

Abstract

This paper presents an extended error variance separation method (EEVS) that allows explicit partitioning of the variance of the errors in gauge- and radar-based representations of areal rainfall. The implementation of EEVS demonstrated in this study combines a kriging scheme for estimating areal rainfall from gauges with a sampling method for determining the correlation between the gauge- and radar-related errors. On the basis of this framework, this study examines scale- and pixel-dependent impacts of subpixel-scale rainfall variability on the perceived partitioning of error variance for four conterminous Hydrologic Rainfall Analysis Project (HRAP) pixels in central Ohio with data from Next-Generation Weather Radar (NEXRAD) stage III product and from 11 collocated rain gauges as input. Application of EEVS for 1998–2001 yields proportional contribution of two error terms for July and October for each HRAP pixel and for two fictitious domains containing the gauges (4 and 8 km in size). The results illustrate the importance of considering subpixel variation of spatial correlation and how it varies with the size of domain size, number of gauges, and the subpixel locations of gauges. Further comparisons of error variance separation (EVS) and EEVS across pixels results suggest that accounting for structured variations in the spatial correlation under 8 km might be necessary for more accurate delineation of domain-dependent partitioning of error variance, and especially so for the summer months.

Full access
Thomas E. Adams III
and
Randel Dymond

Abstract

The use of quantitative precipitation forecast (QPF) in hydrologic forecasting is commonplace, but QPF is subject to considerable error. When QPF is included as a model forcing in the hydrological forecast process, significant error propagates through the hydrologic predictions. Two questions arise: 1) are the resulting observed hydrologic forecast errors sufficiently large to suggest the use of zero QPF in the forecast process, and 2) if the use of nonzero QPF is indicated, how many periods (hours) of QPF (1, 6, 12, …, 72 h) should be used? Also, do forecast conditions exist under which the use of QPF should be different? This study presents results from two real-time hydrologic forecast experiments, focused on the NOAA/NWS Ohio River Forecast Center (OHRFC). The experiments rely on forecasts from subbasins at 39 forecast point locations, ranging in drainage area, geographic location within the Ohio River Valley, and watershed response time. Results from an experiment, spanning all flow ranges, for the 10 August 2007–31 August 2009 period, show that nonzero QPF produces smaller hydrologic forecast error than zero QPF. A second experiment, 23 January 2009–15 September 2010, suggests that QPF should be limited to 6–12-h duration for flood forecasts. Beyond 12 h, hydrologic forecast error increases substantially across all forecast ranges, but errors are much larger for flood forecasts. Increased durations of QPF produce smaller forecast error than shorter QPF durations only for nonflood forecasts. Experimental results are shown to be consistent with NWS April 2001–October 2016 forecast verification statistics for the OHRFC.

Full access

NOAA'S ADVANCED HYDROLOGIC PREDICTION SERVICE

Building Pathways for Better Science in Water Forecasting

John McEnery
,
John Ingram
,
Qingyun Duan
,
Thomas Adams
, and
Lee Anderson

The National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) program was established to meet our nation's need for more precise flash-flood forecast information. AHPS uses NOAA investments in remote sensing, precipitation forecasts, climate predictions, data automation, hydrologic science, and operational forecast system technologies. AHPS establishes a pathway for the infusion of new verified science and technology, and expands the use of NWS climate, weather, and water analyses and information products. State-of-the-art science is used for improved operational forecasting of floods, and drought conditions. The objective is to deliver more precise forecast information over greater temporal scales (hours, days, and months) and to depict the magnitude and certainty of occurrence for events ranging from droughts to floods. The AHPS program improves flash-flood forecasts, and provides ensemble streamflow forecasting and flood-forecast maps. AHPS information is accessible to customers by the internet with texts and graphics. This paper describes AHPS forecasting services and their implementation status.

Full access
Julie Demargne
,
Mary Mullusky
,
Kevin Werner
,
Thomas Adams
,
Scott Lindsey
,
Noreen Schwein
,
William Marosi
, and
Edwin Welles

Forecast verification in operational hydrology has been very limited to date, mainly due to the complexity of verifying both forcing input forecasts and hydrologic forecasts on multiple space-time scales. However, forecast verification needs to be the driver in both hydrologic research and operations to help advance the understanding of predictability and help the diverse users better utilize the river forecasts. Therefore, in NOAA's National Weather Service, the Hydrologic Services Program is developing a comprehensive river forecast verification service to routinely and systematically verify all hydrometeorological and hydrologic forecasts. This verification service will include capabilities for archiving forecast and observed data, evaluating logistical properties of the forecast services, computing a variety of verification metrics to evaluate the different aspects of forecast quality, displaying and disseminating verification data and metrics, and analyzing the sources of forecast skill and uncertainty through the use of multiple forecast and hindcast scenarios. This paper describes ongoing and planned verification activities for enhancing the collaboration between the meteorological and hydrologic research and operational communities to quantify forecast improvements based on rigorous forecast verification.

Full access
Limin Wu
,
Yu Zhang
,
Thomas Adams
,
Haksu Lee
,
Yuqiong Liu
, and
John Schaake

Abstract

Natural weather systems possess certain spatiotemporal variability and correlations. Preserving these spatiotemporal properties is a significant challenge in postprocessing ensemble weather forecasts. To address this challenge, several rank-based methods, the Schaake Shuffle and its variants, have been developed in recent years. This paper presents an extensive assessment of the Schaake Shuffle and its two variants. These schemes differ in how the reference multivariate rank structure is established. The first scheme (SS-CLM), an implementation of the original Schaake Shuffle method, relies on climatological observations to construct rank structures. The second scheme (SS-ANA) utilizes precipitation event analogs obtained from a historical archive of observations. The third scheme (SS-ENS) employs ensemble members from the Global Ensemble Forecast System (GEFS). Each of the three schemes is applied to postprocess precipitation ensemble forecasts from the GEFS for its first three forecast days over the mid-Atlantic region of the United States. In general, the effectiveness of these schemes depends on several factors, including the season (or precipitation pattern) and the level of gridcell aggregation. It is found that 1) the SS-CLM and SS-ANA behave similarly in spatial and temporal correlations; 2) by a measure for capturing spatial variability, the SS-ENS outperforms the SS-ANA, which in turn outperforms the SS-CLM; and 3), overall, the SS-ANA performs better than the SS-CLM. The study also reveals that it is important to choose a proper size for the postprocessed ensembles in order to capture extreme precipitation events.

Full access
Alain Zuber
,
Wolfgang Stremme
,
Michel Grutter
,
David K. Adams
,
Thomas Blumenstock
,
Frank Hase
,
Claudia Rivera
,
Noemie Taquet
,
Alejandro Bezanilla
, and
Eugenia González de Castillo

Abstract

Total column H2O is measured by two remote sensing techniques at the Altzomoni Atmospheric Observatory (19°12′N, 98°65′W, 4000 m above sea level), a high-altitude, tropical background site in central Mexico. A ground-based solar absorption FTIR spectrometer that is part of the Network for Detection of Atmospheric Composition Change (NDACC) is used to retrieve water vapor in three spectral regions (6074–6471, 2925–2941, and 1110–1253 cm−1) and is compared to data obtained from a global positioning system (GPS) receiver that is part of the TLALOCNet GPS-meteorological network. Strong correlations are obtained between the coincident hourly means from the three FTIR products and small relative bias and correction factors could be determined for each when compared to the more consistent GPS data. Retrievals from the 2925–2941 cm−1 spectral region have the highest correlation with GPS [coefficient of determination (R 2) = 0.998, standard deviation (STD) = 0.18 cm (78.39%), mean difference = 0.04 cm (8.33%)], although the other products are also highly correlated [R 2 ≥ 0.99, STD ≤ 0.20 cm (<90%), mean difference ≤ 0.1 cm (<24%)]. Clear-sky dry bias (CSDB) values are reduced to <10% (<0.20 cm) when coincident hourly means are used in the comparison. The use of GPS and FTIR water vapor products simultaneously leads to a more complete and better description of the diurnal and seasonal cycles of water vapor. We describe the water vapor climatology with both complementary datasets, nevertheless, pointing out the importance of considering the clear-sky dry bias arising from the large diurnal and seasonal variability of water vapor at this high-altitude tropical site.

Restricted access
Benjamin A. Cash
,
James L. Kinter III
,
Jennifer Adams
,
Eric Altshuler
,
Bohua Huang
,
Emilia K. Jin
,
Julia Manganello
,
Larry Marx
, and
Thomas Jung

Abstract

Regional variations in seasonal mean Indian summer monsoon rainfall and circulation for the period 1979–2009 are investigated using multiple data products. The focus is on four separate regions: the Western Ghats (WG), the Ganges basin (GB), the Bay of Bengal (BB), and Bangladesh–northeastern India (BD). Data reliability varies strongly by region, with particularly low correlations between different products for the BB and BD regions. Correlations between regions are generally not statistically significant, indicating rainfall varies independently in these four regions. The diagnosed associations between rainfall, circulation, and sea surface temperatures can be sensitive to the choice of rainfall product, and multiple precipitation products may need to be analyzed in this region to ensure that the results are robust.

Enhanced precipitation in the BD region is associated with anomalous anticyclonic circulation at 850 mb and westerly anomalies along the foothills of the Tibetan Plateau, while precipitation in the other regions is associated with cyclonic flow and easterlies. These associations provide a dynamical explanation for previously reported weak, negative correlations between BD and the other regions.

In addition to observed products, atmosphere-only simulations made using the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) during Project Athena are analyzed. While the simulations do not reproduce the observed interannual variations in rainfall, the fidelity of the simulated precipitation and circulation structure is comparable to or even outperforms the different state-of-the-art reanalysis products considered. Accuracy in representing interannual variability and regional structure thus appears to be independent.

Full access
Julia V. Manganello
,
Kevin I. Hodges
,
Brandt Dirmeyer
,
James L. Kinter III
,
Benjamin A. Cash
,
Lawrence Marx
,
Thomas Jung
,
Deepthi Achuthavarier
,
Jennifer M. Adams
,
Eric L. Altshuler
,
Bohua Huang
,
Emilia K. Jin
,
Peter Towers
, and
Nils Wedi

Abstract

How tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations with the ECMWF Integrated Forecast System (IFS) at 16-km and 125-km global resolution. Both models reproduce many aspects of the present-day TC climatology and variability well, although the 16-km IFS is far more skillful in simulating the full intensity distribution and genesis locations, including their changes in response to El Niño–Southern Oscillation. Both IFS models project a small change in TC frequency at the end of the twenty-first century related to distinct shifts in genesis locations. In the 16-km IFS, this shift is southward and is likely driven by the southeastward penetration of the monsoon trough/subtropical high circulation system and the southward shift in activity of the synoptic-scale tropical disturbances in response to the strengthening of deep convective activity over the central equatorial Pacific in a future climate. The 16-km IFS also projects about a 50% increase in the power dissipation index, mainly due to significant increases in the frequency of the more intense storms, which is comparable to the natural variability in the model. Based on composite analysis of large samples of supertyphoons, both the development rate and the peak intensities of these storms increase in a future climate, which is consistent with their tendency to develop more to the south, within an environment that is thermodynamically more favorable for faster development and higher intensities. Coherent changes in the vertical structure of supertyphoon composites show system-scale amplification of the primary and secondary circulations with signs of contraction, a deeper warm core, and an upward shift in the outflow layer and the frequency of the most intense updrafts. Considering the large differences in the projections of TC intensity change between the 16-km and 125-km IFS, this study further emphasizes the need for high-resolution modeling in assessing potential changes in TC activity.

Full access