Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Thomas E. Nelson x
  • Refine by Access: All Content x
Clear All Modify Search
Walter A. Lyons, Marek Uliasz, and Thomas E. Nelson

Abstract

A clear association between large peak current cloud-to-ground lightning flashes of positive polarity and sprites and elves in the stratosphere and mesosphere has been previously demonstrated. This paper reports on the first climatology of large peak current cloud-to-ground (LPCCG) lightning flashes compiled from the U.S. National Lightning Detection Network. Analysis of almost 60 million CG flashes from 14 summer months (1991–95) reveals distinct geographic differences in the distribution of positive and negative polarity LPCCGs, arbitrarily defined as flashes with peak currents ≥75 kA. Large peak current positive CGs (LPC+CGs) are concentrated in the High Plains and upper Midwest, the region in which a large majority of optical sprite and elves observations have been obtained. By contrast, large peak current negative CGs (LPC−CGs) preferentially occur over the coastal waters of the Gulf of Mexico and the southeastern United States. A total of 1.46 million LPCCGs were found, of which only 13.7% were +CGs. Almost 70% of the LPC+CGs, however, occurred in the central United States (30°–50°N, 88°–110°W). The percentage of all LPCCGs that were positive approached 30% in the central United States compared to 4.5% for the remainder of the country. A +CG is 3.1 times more likely to exceed 75 kA than is a −CG flash on a national basis. Yet in terms of absolute numbers for all ranges of peak current ≥75 kA, negative CGs are clearly dominant. For peak currents ≥75 and 200 kA, negative CGs outnumbered positive CGs by ratios of 6.4 and 4.1, respectively. In the central United States, however, during evening hours the number of LPC+CGs almost reaches parity with LPC−CGs. Average stroke multiplicity also exhibited regional differences. Over a half million negative CGs and over 1000 positive CGs were found with multiplicity ≥10.

Full access
Walter A. Lyons, Thomas E. Nelson, Earle R. Williams, Steven A. Cummer, and Mark A. Stanley

Abstract

During the summer of 2000, the Severe Thunderstorm Electrification and Precipitation Study (STEPS) program deployed a three-dimensional Lightning Mapping Array (LMA) near Goodland, Kansas. Video confirmation of sprites triggered by lightning within storms traversing the LMA domain were coordinated with extremely low frequency (ELF) transient measurements in Rhode Island and North Carolina. Two techniques of estimating changes in vertical charge moment (M q) yielded averages of ∼800 and ∼950 C km for 13 sprite-parent positive polarity cloud-to-ground strokes (+CGs). Analyses of the LMA's very high frequency (VHF) lightning emissions within the two mesoscale convective systems (MCSs) show that +CGs did not produce sprites until the centroid of the maximum density of lightning radiation emissions dropped from the upper part of the storm (7–11.5 km AGL) to much lower altitudes (2–5 km AGL). The average height of charge removal (Z q) from 15 sprite-parent +CGs during the late mature phase of one MCS was 4.1 km AGL. Thus, the total charges lowered by sprite-parent +CGs were on the order of 200 C. The regional 0°C isotherm was located at about 4.0 km AGL. This suggests a possible linkage between sprite-parent CGs and melting-layer/brightband charge production mechanisms in MCS stratiform precipitation regions. These cases are supportive of the conceptual MCS sprite-production models previously proposed by two of the authors (Lyons and Williams).

Full access
Marshall Shepherd, Thomas Mote, John Dowd, Mike Roden, Pamela Knox, Steven C. McCutcheon, and Steven E. Nelson

No Abstract available.

Full access
Walter A. Lyons, Thomas E. Nelson, Russell A. Armstrong, Victor P. Pasko, and Mark A. Stanley

A variety of storm top electrical discharges have been observed using several types of low-light imagers, film, and the human eye. Recently, a video recorded an unprecedented, bright blue upward discharge from a tropical thunderstorm top near Puerto Rico. The event reached the base of the ionosphere. The horizontal dimensions of cloud top discharges can range from 100 m to several kilometers. Upward extents vary from 100 m to 70 km. Shapes include “points” of light, upwardly flaring trumpets, and narrow, vertical, lightning-like channels, some topped with expanding blue, flame-like features. Visual appearances range from brilliant white lightning-like channels to a grainy, almost particulate appearing jets of dim blue light, and sometimes as a blue flame within which a brilliant white channel appears. The classical blue jet is at the lower limit of human night vision whereas some upward discharges have been clearly seen during daylight. Cloud top “pixies” last no longer than 16.7 ms, whereas upward lightning-like channels are often characterized as long lasting (2.0 s or more). To date, optical measurements have not associated cloud-top events with specific lightning flashes. There is a strong tendency for all such events to occur above the convective dome of rapidly intensifying thunderstorms. It is possible that the great diversity of forms illustrates the complexity inherent in the upward streamer mechanism for blue jets. It is also possible that the basic blue jet is only one of several distinct classes of discharges from highly electrified storm cloud tops. Future research should focus on rapidly growing convective storm tops, including supercells and intense oceanic storms, as opposed to the stratiform regions of large mesoscale convective systems that have characterized sprite observations to date.

Full access
Walter A. Lyons, Steven A. Cummer, Mark. A. Stanley, Gary R. Huffines, Kyle C. Wiens, and Thomas E. Nelson

Over a decade of monitoring mesospheric transient luminous events (TLEs) above U.S. high plains storms confirmed sprites are almost exclusively associated with positive polarity cloud-to-ground lightning (+CGs). Following C. T. R. Wilson's theory proposed in 1925, only those +CGs lowering large amounts of charge to ground should induce sprites. The key metric, the charge moment change, generally must exceed ~600 C km to initiate the electric breakdown at 75 km, which evolves into the sprite. High plains storms generate the highest percentage, the largest average peak current, and highest density of +CGs in the nation. Various storm types generate +CGs, and especially supercells are often dominated by positive strokes. Few sprites observations above supercells have been obtained (and usually during their decaying phase), while thousands of sprites have been imaged above mesoscale convective system (MCS) stratiform regions and some squall lines. During the 2000 Severe Thunderstorm Electrification and Precipitation Study (STEPS), two supercells were examined. One storm contained >90% +CGs, but none exceeded the sprite charge moment change threshold. A second nocturnal supercell did produce sprites from the last two +CGs of the storm as a stratiform region developed, more favorable for significant continuing currents to follow the +CG return stroke. Unexpectedly, three sprites occurring during the most intense phase of the storm were triggered by unusually intense and impulsive +CGs, which lowered sufficient charge in the return stroke alone for sprite initiation. Such +CGs, and thus sprites, are probably relatively rare events during the supercell mature stage.

Full access

NPOESS

Next-Generation Operational Global Earth Observations

Thomas F. Lee, Craig S. Nelson, Patrick Dills, Lars Peter Riishojgaard, Andy Jones, Li Li, Steven Miller, Lawrence E. Flynn, Gary Jedlovec, William McCarty, Carl Hoffman, and Gary McWilliams

The United States is merging its two polar-orbiting operational environmental satellite programs operated by the Department of Commerce and the Department of Defense into a single system, which is called the National Polar-orbiting Operational Environmental Satellite System (NPOESS). During the next decade, NPOESS will provide global operational data to meet many of the needs of weather forecasters, climate researchers, and global decision makers for remotely sensed Earth science data and global environmental monitoring. The NPOESS Preparatory Project (NPP) will be launched in 2011 as a precursor to NPOESS to reduce final development risks for NPOESS and to provide continuity of global imaging and atmospheric sounding data from the National Aeronautics and Space Administration (NASA) Earth Observing System (EOS) missions. Beginning in 2014, NPOESS spacecraft will be launched into an afternoon orbit and in 2016 into an early-morning orbit to provide significantly improved operational capabilities and benefits to satisfy critical civil and national security requirements for space-based, remotely sensed environmental data. The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Meteorological Operation (MetOp) spacecraft will complement NPOESS in a midmorning orbit. The joint constellation will provide global coverage with a data refresh rate of approximately four hours. NPOESS will observe more phenomena simultaneously from space and deliver a data volume significantly greater than its operational predecessors with substantially improved data delivery to users. Higher-resolution (spatial and spectral) and more accurate imaging and atmospheric sounding data will enable improvements in short- to medium-range weather forecasts. Multispectral and hyperspectral instruments on NPOESS will provide global imagery and sounding products useful to the forecaster that are complementary to those available from geostationary satellites. NPOESS will support the operational needs of meteorological, oceanographic, environmental, climatic, and space environmental remote sensing programs and provide continuity of data for climate researchers. This article that describes NPOESS was completed and accepted for publication prior to the White House decision in February 2010 ordering a major restructuring of the NPOESS program. The Department of Commerce will now assume primary responsibility for the afternoon polar-orbiting operational environmental satellite orbit and the Department of Defense will take primary responsibility for the early morning orbit. However, NPP, as described in this article, is still scheduled to be launched in 2011. Several of the instruments and program elements described in this article are also likely to be carried forward into future U.S. polar-orbiting operational environmental satellite missions.

Full access