Search Results
You are looking at 1 - 10 of 15 items for
- Author or Editor: Thomas H Jagger x
- Refine by Access: All Content x
Abstract
The authors build on their efforts to understand and predict coastal hurricane activity by developing statistical seasonal forecast models that can be used operationally. The modeling strategy uses May–June averaged values representing the North Atlantic Oscillation (NAO), the Southern Oscillation index (SOI), and the Atlantic multidecadal oscillation to predict the probabilities of observing U.S. hurricanes in the months ahead (July–November). The models are developed using a Bayesian approach and make use of data that extend back to 1851 with the earlier hurricane counts (prior to 1899) treated as less certain relative to the later counts. Out-of-sample hindcast skill is assessed using the mean-squared prediction error within a hold-one-out cross-validation exercise. Skill levels are compared to climatology. Predictions show skill above climatology, especially using the NAO + SOI and the NAO-only models. When the springtime NAO values are below normal, there is a heightened risk of U.S. hurricane activity relative to climatology. The preliminary NAO value for 2005 is −0.565 standard deviations so the NAO-only model predicts a 13% increase over climatology of observing three or more U.S. hurricanes.
Abstract
The authors build on their efforts to understand and predict coastal hurricane activity by developing statistical seasonal forecast models that can be used operationally. The modeling strategy uses May–June averaged values representing the North Atlantic Oscillation (NAO), the Southern Oscillation index (SOI), and the Atlantic multidecadal oscillation to predict the probabilities of observing U.S. hurricanes in the months ahead (July–November). The models are developed using a Bayesian approach and make use of data that extend back to 1851 with the earlier hurricane counts (prior to 1899) treated as less certain relative to the later counts. Out-of-sample hindcast skill is assessed using the mean-squared prediction error within a hold-one-out cross-validation exercise. Skill levels are compared to climatology. Predictions show skill above climatology, especially using the NAO + SOI and the NAO-only models. When the springtime NAO values are below normal, there is a heightened risk of U.S. hurricane activity relative to climatology. The preliminary NAO value for 2005 is −0.565 standard deviations so the NAO-only model predicts a 13% increase over climatology of observing three or more U.S. hurricanes.
Abstract
The authors apply a procedure called Bayesian model averaging (BMA) for examining the utility of a set of covariates for predicting the distribution of U.S. hurricane counts and demonstrating a consensus model for seasonal prediction. Hurricane counts are derived from near-coastal tropical cyclones over the period 1866–2008. The covariate set consists of the May–October monthly averages of the Atlantic SST, North Atlantic Oscillation (NAO) index, Southern Oscillation index (SOI), and sunspot number (SSN). BMA produces posterior probabilities indicating the likelihood of the model given the set of annual hurricane counts and covariates. The September SSN covariate appears most often in the higher-probability models. The sign of the September SSN parameter is negative indicating that the probability of a U.S. hurricane decreases with more sunspots. A consensus hindcast for the 2007 and 2008 season is made by averaging forecasts from a large subset of models weighted by their corresponding posterior probability. A cross-validation exercise confirms that BMA can provide more accurate forecasts compared to methods that select a single “best” model. More importantly, the BMA procedure incorporates more of the uncertainty associated with making a prediction of this year’s hurricane activity from data.
Abstract
The authors apply a procedure called Bayesian model averaging (BMA) for examining the utility of a set of covariates for predicting the distribution of U.S. hurricane counts and demonstrating a consensus model for seasonal prediction. Hurricane counts are derived from near-coastal tropical cyclones over the period 1866–2008. The covariate set consists of the May–October monthly averages of the Atlantic SST, North Atlantic Oscillation (NAO) index, Southern Oscillation index (SOI), and sunspot number (SSN). BMA produces posterior probabilities indicating the likelihood of the model given the set of annual hurricane counts and covariates. The September SSN covariate appears most often in the higher-probability models. The sign of the September SSN parameter is negative indicating that the probability of a U.S. hurricane decreases with more sunspots. A consensus hindcast for the 2007 and 2008 season is made by averaging forecasts from a large subset of models weighted by their corresponding posterior probability. A cross-validation exercise confirms that BMA can provide more accurate forecasts compared to methods that select a single “best” model. More importantly, the BMA procedure incorporates more of the uncertainty associated with making a prediction of this year’s hurricane activity from data.
Abstract
Models that predict annual U.S. hurricane activity assume a Poisson distribution for the counts. Here the authors show that this assumption applied to Florida hurricanes leads to a forecast that underpredicts both the number of years without hurricanes and the number of years with three or more hurricanes. The underdispersion in forecast counts arises from a tendency for hurricanes to arrive in groups along this part of the coastline. The authors then develop an extension to their earlier statistical model that assumes that the rate of hurricane clusters follows a Poisson distribution with cluster size capped at two hurricanes. Hindcasts from the cluster model better fit the distribution of Florida hurricanes conditional on the climate covariates including the North Atlantic Oscillation and Southern Oscillation index. Results are similar to models that parameterize the extra-Poisson variation in the observed counts, including the negative binomial and the Poisson inverse Gaussian models. The authors argue, however, that the cluster model is physically consistent with the way Florida hurricanes tend to arrive in groups.
Abstract
Models that predict annual U.S. hurricane activity assume a Poisson distribution for the counts. Here the authors show that this assumption applied to Florida hurricanes leads to a forecast that underpredicts both the number of years without hurricanes and the number of years with three or more hurricanes. The underdispersion in forecast counts arises from a tendency for hurricanes to arrive in groups along this part of the coastline. The authors then develop an extension to their earlier statistical model that assumes that the rate of hurricane clusters follows a Poisson distribution with cluster size capped at two hurricanes. Hindcasts from the cluster model better fit the distribution of Florida hurricanes conditional on the climate covariates including the North Atlantic Oscillation and Southern Oscillation index. Results are similar to models that parameterize the extra-Poisson variation in the observed counts, including the negative binomial and the Poisson inverse Gaussian models. The authors argue, however, that the cluster model is physically consistent with the way Florida hurricanes tend to arrive in groups.
Abstract
A hierarchical Bayesian strategy for modeling annual U.S. hurricane counts from the period 1851–2000 is illustrated. The approach is based on a separation of the reliable twentieth-century records from the less precise nineteenth-century records and makes use of Poisson regression. The work extends a recent climatological analysis of U.S. hurricanes by including predictors (covariates) in the form of indices for the El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). Model integration is achieved through a Markov chain Monte Carlo algorithm. A Bayesian strategy that uses only hurricane counts from the twentieth century together with noninformative priors compares favorably to a traditional (frequentist) approach and confirms a statistical relationship between climate patterns and coastal hurricane activity. Coinciding La Niña and negative NAO conditions significantly increase the probability of a U.S. hurricane. Hurricane counts from the nineteenth century are bootstrapped to obtain informative priors on the model parameters. The earlier records, though less reliable, allow for a more precise description of U.S. hurricane activity. This translates to a greater certainty in the authors' belief about the effects of ENSO and NAO on coastal hurricane activity. Similar conclusions are drawn when annual U.S. hurricane counts are disaggregated into regional counts. Contingent on the availability of values for the covariates, the models can be used to make predictive inferences about the hurricane season.
Abstract
A hierarchical Bayesian strategy for modeling annual U.S. hurricane counts from the period 1851–2000 is illustrated. The approach is based on a separation of the reliable twentieth-century records from the less precise nineteenth-century records and makes use of Poisson regression. The work extends a recent climatological analysis of U.S. hurricanes by including predictors (covariates) in the form of indices for the El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). Model integration is achieved through a Markov chain Monte Carlo algorithm. A Bayesian strategy that uses only hurricane counts from the twentieth century together with noninformative priors compares favorably to a traditional (frequentist) approach and confirms a statistical relationship between climate patterns and coastal hurricane activity. Coinciding La Niña and negative NAO conditions significantly increase the probability of a U.S. hurricane. Hurricane counts from the nineteenth century are bootstrapped to obtain informative priors on the model parameters. The earlier records, though less reliable, allow for a more precise description of U.S. hurricane activity. This translates to a greater certainty in the authors' belief about the effects of ENSO and NAO on coastal hurricane activity. Similar conclusions are drawn when annual U.S. hurricane counts are disaggregated into regional counts. Contingent on the availability of values for the covariates, the models can be used to make predictive inferences about the hurricane season.
Abstract
The rarity of severe coastal hurricanes implies that empirical estimates of extreme wind speed return levels will be unreliable. Here climatology models derived from extreme value theory are estimated using data from the best-track [Hurricane Database (HURDAT)] record. The occurrence of a hurricane above a specified threshold intensity level is assumed to follow a Poisson distribution, and the distribution of the maximum wind is assumed to follow a generalized Pareto distribution. The likelihood function is the product of the generalized Pareto probabilities for each wind speed estimate. A geographic region encompassing the entire U.S. coast vulnerable to Atlantic hurricanes is of primary interest, but the Gulf Coast, Florida, and the East Coast regions are also considered. Model parameters are first estimated using a maximum likelihood (ML) procedure. Results estimate the 100-yr return level for the entire coast at 157 kt (±10 kt), but at 117 kt (±4 kt) for the East Coast region (1 kt = 0.514 m s−1). Highest wind speed return levels are noted along the Gulf Coast from Texas to Alabama. The study also examines how the extreme wind return levels change depending on climate conditions including El Niño–Southern Oscillation, the Atlantic Multidecadal Oscillation, the North Atlantic Oscillation, and global temperature. The mean 5-yr return level during La Niña (El Niño) conditions is 125 (116) kt, but is 140 (164) kt for the 100-yr return level. This indicates that La Niña years are the most active for the occurrence of strong hurricanes, but that extreme hurricanes are more likely during El Niño years. Although El Niño inhibits hurricane formation in part through wind shear, the accompanying cooler lower stratosphere appears to increase the potential intensity of hurricanes that do form. To take advantage of older, less reliable data, the models are reformulated using Bayesian methods. Gibbs sampling is used to integrate the prior over the likelihood to obtain the posterior distributions for the model parameters conditional on global temperature. Higher temperatures are conditionally associated with more strong hurricanes and higher return levels for the strongest hurricane winds. Results compare favorably with an ML approach as well as with recent modeling and observational studies. The maximum possible near-coastal wind speed is estimated to be 208 kt (183 kt) using the Bayesian (ML) approach.
Abstract
The rarity of severe coastal hurricanes implies that empirical estimates of extreme wind speed return levels will be unreliable. Here climatology models derived from extreme value theory are estimated using data from the best-track [Hurricane Database (HURDAT)] record. The occurrence of a hurricane above a specified threshold intensity level is assumed to follow a Poisson distribution, and the distribution of the maximum wind is assumed to follow a generalized Pareto distribution. The likelihood function is the product of the generalized Pareto probabilities for each wind speed estimate. A geographic region encompassing the entire U.S. coast vulnerable to Atlantic hurricanes is of primary interest, but the Gulf Coast, Florida, and the East Coast regions are also considered. Model parameters are first estimated using a maximum likelihood (ML) procedure. Results estimate the 100-yr return level for the entire coast at 157 kt (±10 kt), but at 117 kt (±4 kt) for the East Coast region (1 kt = 0.514 m s−1). Highest wind speed return levels are noted along the Gulf Coast from Texas to Alabama. The study also examines how the extreme wind return levels change depending on climate conditions including El Niño–Southern Oscillation, the Atlantic Multidecadal Oscillation, the North Atlantic Oscillation, and global temperature. The mean 5-yr return level during La Niña (El Niño) conditions is 125 (116) kt, but is 140 (164) kt for the 100-yr return level. This indicates that La Niña years are the most active for the occurrence of strong hurricanes, but that extreme hurricanes are more likely during El Niño years. Although El Niño inhibits hurricane formation in part through wind shear, the accompanying cooler lower stratosphere appears to increase the potential intensity of hurricanes that do form. To take advantage of older, less reliable data, the models are reformulated using Bayesian methods. Gibbs sampling is used to integrate the prior over the likelihood to obtain the posterior distributions for the model parameters conditional on global temperature. Higher temperatures are conditionally associated with more strong hurricanes and higher return levels for the strongest hurricane winds. Results compare favorably with an ML approach as well as with recent modeling and observational studies. The maximum possible near-coastal wind speed is estimated to be 208 kt (183 kt) using the Bayesian (ML) approach.
Abstract
Advances in hurricane climate science allow forecasts of seasonal landfall activity to be made. The authors begin with a review of the forecast methods available in the literature. They then reformulate the methods using a Bayesian probabilistic approach. This allows a direct comparison to be made while focusing on a single hindcast of the 2004 season over Florida. The models, including climatology, are estimated using Gibbs sampling. Diagnostic checks verify convergence and efficient mixing of the samples from each of the models. A below average sea level pressure gradient over the eastern North Atlantic Ocean during May and June in combination with an above average tropospheric-averaged wind index associated, in part, with a strengthening of the Bermuda high pressure during July resulted in an above average probability of at least one Florida hurricane. The relatively high hindcast probabilities for 2004 were in marked contrast to the most recent 50-yr empirical probabilities for Florida, but fell short in anticipating the unprecedented level of activity that ensued. Similar results are obtained from hindcasts of total U.S. hurricane activity for 2004.
Abstract
Advances in hurricane climate science allow forecasts of seasonal landfall activity to be made. The authors begin with a review of the forecast methods available in the literature. They then reformulate the methods using a Bayesian probabilistic approach. This allows a direct comparison to be made while focusing on a single hindcast of the 2004 season over Florida. The models, including climatology, are estimated using Gibbs sampling. Diagnostic checks verify convergence and efficient mixing of the samples from each of the models. A below average sea level pressure gradient over the eastern North Atlantic Ocean during May and June in combination with an above average tropospheric-averaged wind index associated, in part, with a strengthening of the Bermuda high pressure during July resulted in an above average probability of at least one Florida hurricane. The relatively high hindcast probabilities for 2004 were in marked contrast to the most recent 50-yr empirical probabilities for Florida, but fell short in anticipating the unprecedented level of activity that ensued. Similar results are obtained from hindcasts of total U.S. hurricane activity for 2004.
Abstract
Hurricane return levels estimated using historical and geological information are quantitatively compared for Lake Shelby, Alabama. The minimum return level of overwash events recorded in sediment cores is estimated using a modern analog (Hurricane Ivan of 2004) to be 54 m s−1 (105 kt) for a return period of 318 yr based on 11 events over 3500 yr. The expected return level of rare hurricanes in the observed records (1851–2005) at this location and for this return period is estimated using a parametric statistical model and a maximum likelihood procedure to be 73 m s−1 (141 kt), with a lower bound on the 95% confidence interval of 64 m s−1 (124 kt). Results are not significantly different if data are taken from the shorter 1880–2005 period. Thus, the estimated sensitivity of Lake Shelby to overwash events is consistent with the historical record given the model. In fact, assuming the past is similar to the present, the sensitivity of the site to overwash events as estimated from the model is likely more accurately set at 64 m s−1.
Abstract
Hurricane return levels estimated using historical and geological information are quantitatively compared for Lake Shelby, Alabama. The minimum return level of overwash events recorded in sediment cores is estimated using a modern analog (Hurricane Ivan of 2004) to be 54 m s−1 (105 kt) for a return period of 318 yr based on 11 events over 3500 yr. The expected return level of rare hurricanes in the observed records (1851–2005) at this location and for this return period is estimated using a parametric statistical model and a maximum likelihood procedure to be 73 m s−1 (141 kt), with a lower bound on the 95% confidence interval of 64 m s−1 (124 kt). Results are not significantly different if data are taken from the shorter 1880–2005 period. Thus, the estimated sensitivity of Lake Shelby to overwash events is consistent with the historical record given the model. In fact, assuming the past is similar to the present, the sensitivity of the site to overwash events as estimated from the model is likely more accurately set at 64 m s−1.
Abstract
A statistical procedure for estimating the risk of strong winds from hurricanes is demonstrated and applied to several major cities in Florida. The procedure, called the hurricane risk calculator, provides an estimate of wind risk over different length periods and can be applied to any location experiencing this hazard. Results show that the city of Miami can expect to see hurricane winds blowing at 50 m s−1 [45.5–54.5 m s−1 is the 90% confidence interval (CI)] or stronger, on average, once every 12 yr. In comparison, the city of Pensacola can expect to see hurricane winds of 50 m s−1 (46.9–53.1 m s−1, 90% CI) or stronger once every 24 yr. A quantile regression is applied to hurricane wind speeds in the vicinity of Florida. Results show that the strongest hurricanes are getting stronger as a consequence of higher offshore intensification rates.
Abstract
A statistical procedure for estimating the risk of strong winds from hurricanes is demonstrated and applied to several major cities in Florida. The procedure, called the hurricane risk calculator, provides an estimate of wind risk over different length periods and can be applied to any location experiencing this hazard. Results show that the city of Miami can expect to see hurricane winds blowing at 50 m s−1 [45.5–54.5 m s−1 is the 90% confidence interval (CI)] or stronger, on average, once every 12 yr. In comparison, the city of Pensacola can expect to see hurricane winds of 50 m s−1 (46.9–53.1 m s−1, 90% CI) or stronger once every 24 yr. A quantile regression is applied to hurricane wind speeds in the vicinity of Florida. Results show that the strongest hurricanes are getting stronger as a consequence of higher offshore intensification rates.
Abstract
Hurricanes cause drastic social problems as well as generate huge economic losses. A reliable forecast of the level of hurricane activity covering the next several seasons has the potential to mitigate against such losses through improvements in preparedness and insurance mechanisms. Here a statistical algorithm is developed to predict North Atlantic hurricane activity out to 5 yr. The algorithm has two components: a time series model to forecast average hurricane-season Atlantic sea surface temperature (SST), and a regression model to forecast the hurricane rate given the predicted SST value. The algorithm uses Monte Carlo sampling to generate distributions for the predicted SST and model coefficients. For a given forecast year, a predicted hurricane count is conditional on a sampled predicted value of Atlantic SST. Thus forecasts are samples of hurricane counts for each future year. Model skill is evaluated over the period 1997–2005 and compared against climatology, persistence, and other multiseasonal forecasts issued during this time period. Results indicate that the algorithm will likely improve on earlier efforts and perhaps carry enough skill to be useful in the long-term management of hurricane risk.
Abstract
Hurricanes cause drastic social problems as well as generate huge economic losses. A reliable forecast of the level of hurricane activity covering the next several seasons has the potential to mitigate against such losses through improvements in preparedness and insurance mechanisms. Here a statistical algorithm is developed to predict North Atlantic hurricane activity out to 5 yr. The algorithm has two components: a time series model to forecast average hurricane-season Atlantic sea surface temperature (SST), and a regression model to forecast the hurricane rate given the predicted SST value. The algorithm uses Monte Carlo sampling to generate distributions for the predicted SST and model coefficients. For a given forecast year, a predicted hurricane count is conditional on a sampled predicted value of Atlantic SST. Thus forecasts are samples of hurricane counts for each future year. Model skill is evaluated over the period 1997–2005 and compared against climatology, persistence, and other multiseasonal forecasts issued during this time period. Results indicate that the algorithm will likely improve on earlier efforts and perhaps carry enough skill to be useful in the long-term management of hurricane risk.
The power dissipation of Atlantic tropical cyclones has risen dramatically during the last decades and the increase is correlated with an increase in the underlying sea surface temperature (SST) at low (decadal) frequencies. Because of the large positive correlation between global mean surface air temperature (GT) and Atlantic SST it has been speculated that increases in the power dissipation might, in part, be related to human activity. Here we investigate the question of the relationship between GT and hurricane power dissipation directly using statistical analysis and show that after removing the effect of SST, the correlation between GT and hurricane power dissipation is negative. This suggests that the positive influence of global temperature on Atlantic hurricanes appears to be limited to an indirect connection with tropical Atlantic SST. We also show that the relationship between hurricane power dissipation and Atlantic SST is significant at the high-frequency time scales. El Niño–Southern Oscillation (ENSO) plays an important role in statistically explaining the variations in hurricane power at these higher frequencies.
The power dissipation of Atlantic tropical cyclones has risen dramatically during the last decades and the increase is correlated with an increase in the underlying sea surface temperature (SST) at low (decadal) frequencies. Because of the large positive correlation between global mean surface air temperature (GT) and Atlantic SST it has been speculated that increases in the power dissipation might, in part, be related to human activity. Here we investigate the question of the relationship between GT and hurricane power dissipation directly using statistical analysis and show that after removing the effect of SST, the correlation between GT and hurricane power dissipation is negative. This suggests that the positive influence of global temperature on Atlantic hurricanes appears to be limited to an indirect connection with tropical Atlantic SST. We also show that the relationship between hurricane power dissipation and Atlantic SST is significant at the high-frequency time scales. El Niño–Southern Oscillation (ENSO) plays an important role in statistically explaining the variations in hurricane power at these higher frequencies.