Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Thomas Mace x
  • All content x
Clear All Modify Search
Gerald G. Mace and Thomas P. Ackerman

Abstract

A topic of current practical interest is the accurate characterization of the synoptic-scale atmospheric state from wind profiler and radiosonde network observations. The authors have examined several related and commonly applied objective analysis techniques for performing this characterization and considered their associated level of uncertainty both from a theoretical and a practical standpoint. A case study is presented where two wind profiler triangles with nearly identical centroids and no common vertices produced strikingly different results during a 43-h period. It is concluded that the uncertainty in objectively analyzed quantities can easily be as large as the expected synoptic-scale signal. In order to quantify the statistical precision of the algorithms, the authors conducted a realistic observing system simulation experiment using output from a mesoscale model. A simple parameterization for estimating the uncertainty in horizontal gradient quantities in terms of known errors in the objectively analyzed wind components and temperature is developed from these results.

Full access
Mace L. Bentley and Thomas L. Mote

In 1888, Iowa weather researcher Gustavus Hinrichs gave widespread convectively induced windstorms the name “derecho”. Refinements to this definition have evolved after numerous investigations of these systems; however, to date, a derecho climatology has not been conducted.

This investigation examines spatial and temporal aspects of derechos and their associated mesoscale convective systems that occurred from 1986 to 1995. The spatial distribution of derechos revealed four activity corridors during the summer, five during the spring, and two during the cool season. Evidence suggests that the primary warm season derecho corridor is located in the southern Great Plains. During the cool season, derecho activity was found to occur in the southeast states and along the Atlantic seaboard. Temporally, derechos are primarily late evening or overnight events during the warm season and are more evenly distributed throughout the day during the cool season.

Full access
Gerald G. Mace, Eugene E. Clothiaux, and Thomas P. Ackerman

Abstract

The properties of midlatitude cirrus clouds are examined using one year of continuous vertically pointing millimeter-wave cloud radar data collected at the Atmospheric Radiation Measurement Program Southern Great Plains site in Oklahoma. The goal of this analysis is to present the cloud characteristics in a manner that will aid in the evaluation and improvement of cirrus parameterizations in large-scale models. Using a temperature- and radar reflectivity–based definition of cirrus, the occurrence frequency of cirrus, the vertical location and thickness of cirrus layers, and other fundamental statistics are examined. Also the bulk microphysical properties of optically thin cirrus layers that occur in isolation from other cloud layers are examined. During 1997, it is found that cirrus were present 22% of the time, had a mean layer thickness of 2.0 km, and were most likely to occur in the 8.5–10-km height range. On average, the cirrus clouds tended to be found in layers in which the synoptic-scale vertical velocity was weakly ascending. The mean synoptic-scale vertical motion in the upper troposphere as derived from Rapid Update Cycle model output was +0.2 cm s−1. However, a significant fraction of the layers (33%) were found where the upper-tropospheric large-scale vertical velocity was clearly descending (w < −1.5 cm s−1). Microphysical properties were computed for that subset of cirrus events that were optically thin (infrared emissivity < 0.85) and occurred with no lower cloud layers. This subset of cirrus had mean values of ice water path, effective radius, and ice crystal concentration of 8 g m−2, 35 μm, and 100 L−1, respectively. Although all the cloud properties demonstrated a high degree of variability during the period considered, the statistics of these properties were fairly steady throughout the annual cycle. Consistent with previous studies, it is found that the cloud microphysical properties appear to be strongly correlated to the cloud layer thickness and mean temperature. Use of these results for parameterization of cirrus properties in large-scale models is discussed.

Full access
Mace L. Bentley, Thomas L. Mote, and Paporn Thebpanya

During 12 and 18 August 1999, severe thunderstorms produced damaging winds and hail that caused an estimated $50 million in damage to agriculture in west-central Illinois. Landsat-7 imagery was obtained to determine the areal extent of damage and produce a crop damage dollar estimate. The normalized difference vegetation index (NDVI) was calculated for images taken "before" and "after" the severe thunderstorm events in order to examine the changes in NDVI, or vegetation vigor. A differenced image was also produced by subtracting the NDVI of the two images.

Landsat-7 data was found to be useful for identifying the areal extent of severe thunderstorm damage in west-central Illinois. In comparing the detection of damage produced by high winds and hail, it was found that hail damage was considerably easier to identify. This is due to the fact that large hail typically destroys the crops while high winds blow over corn plants that can remain rooted and survive.

Additionally, county estimates of dollar losses in crops were produced and compare favorably with estimates contained in Storm Data. Findings suggest, however, that Storm Data reports are inadequate for attempting to determine the areal extent of damage due to the difficulties in drive-by, ground-based estimation. Storm Data is primarily useful for locating the general area and extent of storm damage when reports and loss estimates were able to be obtained by the local National Weather Service Office.

Full access
Roger Marchand, Gerald G. Mace, Thomas Ackerman, and Graeme Stephens

Abstract

In late April 2006, NASA launched Cloudsat, an earth-observing satellite that uses a near-nadir-pointing millimeter-wavelength radar to probe the vertical structure of clouds and precipitation. The first step in using Cloudsat measurements is to distinguish clouds and other hydrometeors from radar noise. In this article the operational Cloudsat hydrometeor detection algorithm is described, difficulties due to surface clutter are discussed, and several examples from the early mission are shown. A preliminary comparison of the Cloudsat hydrometeor detection algorithm with lidar-based results from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite is also provided.

Full access
Gerald G. Mace, David O'C. Starr, Thomas P. Ackerman, and Patrick Minnis

Abstract

The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE Cirrus-II Intensive Field Observing Period held in Coffeyville, Kansas, during November–December 1991. Using data from the wind profiler demonstration network and a temporarlly and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer–Eliassen equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and a building ridge. The cloud line formed in the ascending branch of the vertical circulation, with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large-scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed, and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

Full access
Thomas L. Mote, Douglas W. Gamble, S. Jeffrey Underwood, and Mace L. Bentley

Abstract

Eighteen heavy snowstorms in the Southeast are examined to determine the synoptic-scale features common to these storms. Storm-relative composites in the temporal domain are created by assigning a “zero hour” to each storm based on the time of initial snowfall at Asheville, North Carolina. The composites indicate the importance of warm air advection (isentropic upglide) in producing upward motion within these storms. Of secondary importance in producing upward motion are the right entrance region of an upper-level jet streak, diabatic processes, and cyclogenetic lift. The composites also indicate that moisture is drawn off the Gulf of Mexico to feed these storms, while Atlantic moisture pools at low levels and may inhibit snowfall in the Piedmont region by limiting evaporative cooling. The surface cyclones, which deepen over the Atlantic near the Carolina coast, appear to play a small role in the development of Southeast snowstorms but often lead to heavy snowfall in the Northeast.

Full access
Eugene E. Clothiaux, Thomas P. Ackerman, Gerald G. Mace, Kenneth P. Moran, Roger T. Marchand, Mark A. Miller, and Brooks E. Martner

Abstract

The U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program is deploying sensitive, millimeter-wave cloud radars at its Cloud and Radiation Test Bed (CART) sites in Oklahoma, Alaska, and the tropical western Pacific Ocean. The radars complement optical devices, including a Belfort or Vaisala laser ceilometer and a micropulse lidar, in providing a comprehensive source of information on the vertical distribution of hydrometeors overhead at the sites. An algorithm is described that combines data from these active remote sensors to produce an objective determination of hydrometeor height distributions and estimates of their radar reflectivities, vertical velocities, and Doppler spectral widths, which are optimized for accuracy. These data provide fundamental information for retrieving cloud microphysical properties and assessing the radiative effects of clouds on climate. The algorithm is applied to nine months of data from the CART site in Oklahoma for initial evaluation. Much of the algorithm’s calculations deal with merging and optimizing data from the radar’s four sequential operating modes, which have differing advantages and limitations, including problems resulting from range sidelobes, range aliasing, and coherent averaging. Two of the modes use advanced phase-coded pulse compression techniques to yield approximately 10 and 15 dB more sensitivity than is available from the two conventional pulse modes. Comparison of cloud-base heights from the Belfort ceilometer and the micropulse lidar confirms small biases found in earlier studies, but recent information about the ceilometer brings the agreement to within 20–30 m. Merged data of the radar’s modes were found to miss approximately 5.9% of the clouds detected by the laser systems. Using data from only the radar’s two less-sensitive conventional pulse modes would increase the missed detections to 22%–34%. A significant remaining problem is that the radar’s lower-altitude data are often contaminated with echoes from nonhydrometeor targets, such as insects.

Full access
Eugene E. Clothiaux, Kenneth P. Moran, Brooks E. Martner, Thomas P. Ackerman, Gerald G. Mace, Taneil Uttal, James H. Mather, Kevin B. Widener, Mark A. Miller, and Daniel J. Rodriguez

Abstract

During the past decade, the U.S. Department of Energy (DOE), through the Atmospheric Radiation Measurement (ARM) Program, has supported the development of several millimeter-wavelength radars for the study of clouds. This effort has culminated in the development and construction of a 35-GHz radar system by the Environmental Technology Laboratory (ETL) of the National Oceanic and Atmospheric Administration (NOAA). Radar systems based on the NOAA ETL design are now operating at the DOE ARM Southern Great Plains central facility in central Oklahoma and the DOE ARM North Slope of Alaska site near Barrow, Alaska. Operational systems are expected to come online within the next year at the DOE ARM tropical western Pacific sites located at Manus, Papua New Guinea, and Nauru. In order for these radars to detect the full range of atmospheric hydrometeors, specific modes of operation must be implemented on them that are tuned to accurately detect the reflectivities of specific types of hydrometeors. The set of four operational modes that are currently in use on these radars are presented and discussed. The characteristics of the data produced by these modes of operation are also presented in order to illustrate the nature of the cloud products that are, and will be, derived from them on a continuous basis.

Full access
Pavlos Kollias, Eugene E. Clothiaux, Thomas P. Ackerman, Bruce A. Albrecht, Kevin B. Widener, Ken P. Moran, Edward P. Luke, Karen L. Johnson, Nitin Bharadwaj, James B. Mead, Mark A. Miller, Johannes Verlinde, Roger T. Marchand, and Gerald G. Mace
Full access