Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: Tian Zhou x
  • Refine by Access: All Content x
Clear All Modify Search
Jiwei Tian, Lei Zhou, and Xiaoqian Zhang

Abstract

Ten years of Ocean Topography Experiment (TOPEX)/Poseidon tidal data and an energy balance relation are used to estimate the mixing rate caused by M 2 internal tides in the upper ocean. The results indicate that latitudinal distribution of the mixing rate has a generally symmetrical structure with respect to the equator. The maxima are distributed around 28.9°N and 28.9°S and can be as high as 3.8 × 10−5 m2 s−1 in the Pacific, 5 × 10−5 m2 s−1 in the Atlantic, and 3.7 × 10−5 m2 s−1 in the Indian Oceans. The minimum, which is only 10% of those at 28.9°, is located near the equator. The data imply that midlatitudes are the key regions for internal tide mixing.

Full access
Chun Zhou, Wei Zhao, Jiwei Tian, Qingxuan Yang, and Tangdong Qu

Abstract

The Luzon Strait, with its deepest sills at the Bashi Channel and Luzon Trough, is the only deep connection between the Pacific Ocean and the South China Sea (SCS). To investigate the deep-water overflow through the Luzon Strait, 3.5 yr of continuous mooring observations have been conducted in the deep Bashi Channel and Luzon Trough. For the first time these observations enable us to assess the detailed variability of the deep-water overflow from the Pacific to the SCS. On average, the along-stream velocity of the overflow is at its maximum at about 120 m above the ocean bottom, reaching 19.9 ± 6.5 and 23.0 ± 11.8 cm s−1 at the central Bashi Channel and Luzon Trough, respectively. The velocity measurements can be translated to a mean volume transport for the deep-water overflow of 0.83 ± 0.46 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) at the Bashi Channel and 0.88 ± 0.77 Sv at the Luzon Trough. Significant intraseasonal and seasonal variations are identified, with their dominant time scales ranging between 20 and 60 days and around 100 days. The intraseasonal variation is season dependent, with its maximum strength taking place in March–May. Deep-water eddies are believed to play a role in this intraseasonal variation. On the seasonal time scale, the deep-water overflow intensifies in late fall (October–December) and weakens in spring (March–May), corresponding well with the seasonal variation of the density difference between the Pacific and SCS, for which enhanced mixing in the deep SCS is possibly responsible.

Full access
An-Zhou Cao, Bing-Tian Li, and Xian-Qing Lv

Abstract

To obtain internal tidal currents and full-depth tidal currents from limited mooring observations, a method is put forward combining harmonic analysis and modal decomposition. Harmonic analysis is used to separate tidal currents of different constituents, and modal decomposition is used to calculate full-depth tidal currents of each mode. By adding the barotropic tidal currents to all the baroclinic ones, the full-depth tidal currents of each constituent are reconstructed. The feasibility and accuracy of the proposed method is tested by twin experiments. Then, the method is used to extract tidal currents of each mode and to reconstruct full-depth tidal currents for M2 and K1 from a 3-month-long time series of acoustic Doppler current data observed at a station in the northern South China Sea. Results indicate that the total kinetic energy (KE) of M2 is 25% larger than that of K1. For M2, the first baroclinic mode is the dominant one, followed by the barotropic one, and the sum of these modes accounts for more than 90% of the total M2 KE. Tidal constituent K1 is dominated by the barotropic mode, which accounts for more than 90% of the total K1 KE.

Full access
Tian Zhou, Bart Nijssen, Huilin Gao, and Dennis P. Lettenmaier

Abstract

Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variations is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.25° latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60% of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10% of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72% of combined snow water equivalent and soil moisture storage.

Full access
Tian Zhou, Bart Nijssen, George J. Huffman, and Dennis P. Lettenmaier

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) near-real-time (RT) data are considered less accurate than the TMPA research quality (RP) data because of the simplified data processing algorithm and the lack of gauge adjustments. However, for near-real-time hydrological applications, such as drought nowcasting, the RT data must play a key role given latency considerations and consistency is essential with products like RP, which have a long-term climatology. The authors used a bivariate test to examine the consistency between the monthly RT and RP precipitation estimates for 12 yr (2000–12) and found that, for over 75% of land cells globally, RT and RP were statistically consistent at 0.05 significance level. The inconsistent grid cells are spatially clustered in western North America, northern South America, central Africa, and most of Australia. The authors also show that RT generally increases with time relative to RP in northern South America and western Australia, while in western North America and eastern Australia, RT decreases relative to RP. In other areas such as the eastern part of North America, Eurasia, and southern part of the South America, the RT data are statistically consistent with the RP data and are appropriate for global- or macroscale hydrological applications.

Full access
Liming Zhou, Yuhong Tian, Nan Wei, Shu-peng Ho, and Jing Li

Abstract

Turbulent mixing in the planetary boundary layer (PBL) governs the vertical exchange of heat, moisture, momentum, trace gases, and aerosols in the surface–atmosphere interface. The PBL height (PBLH) represents the maximum height of the free atmosphere that is directly influenced by Earth’s surface. This study uses a multidata synthesis approach from an ensemble of multiple global datasets of radiosonde observations, reanalysis products, and climate model simulations to examine the spatial patterns of long-term PBLH trends over land between 60°S and 60°N for the period 1979–2019. By considering both the sign and statistical significance of trends, we identify large-scale regions where the change signal is robust and consistent to increase our confidence in the obtained results. Despite differences in the magnitude and sign of PBLH trends over many areas, all datasets reveal a consensus on increasing PBLH over the enormous and very dry Sahara Desert and Arabian Peninsula (SDAP) and declining PBLH in India. At the global scale, the changes in PBLH are significantly correlated positively with the changes in surface heating and negatively with the changes in surface moisture, consistent with theory and previous findings in the literature. The rising PBLH is in good agreement with increasing sensible heat and surface temperature and decreasing relative humidity over the SDAP associated with desert amplification, while the declining PBLH resonates well with increasing relative humidity and latent heat and decreasing sensible heat and surface warming in India. The PBLH changes agree with radiosonde soundings over the SDAP but cannot be validated over India due to lack of good-quality radiosonde observations.

Restricted access
Zhongbin Sun, Zhiwei Zhang, Bo Qiu, Xincheng Zhang, Chun Zhou, Xiaodong Huang, Wei Zhao, and Jiwei Tian

Abstract

Based on long-term mooring-array and satellite observations, three-dimensional structure and interannual variability of the Kuroshio Loop Current (KLC) in the northeastern South China Sea (SCS) were investigated. The 3-yr moored data between 2014 and 2017 revealed that the KLC mainly occurred in winter and it exhibited significant interannual variability with moderate, weak, and strong strengths in the winters of 2014/15, 2015/16, and 2016/17, respectively. Spatially, the KLC structure was initially confined to the upper 500 m near the Luzon Strait, but it became more barotropic, with kinetic energy transferring from the baroclinic mode to the barotropic mode when it extended into the SCS interior. Through analyzing the historical altimeter data between 1993 and 2019, it is found that the KLC event in 2016/17 winter is the strongest one since 1993. Moored-data-based energetics analysis suggested that the growth of this KLC event was primarily fed by the strong wind work associated with the strengthened northeast monsoon in that La Niña–year winter. By examining all of the historical KLC events, it is found that the strength of KLC is significantly modulated by El Niño–Southern Oscillation, being stronger in La Niña and weaker in El Niño years. This interannual modulation could be explained by the strengthened (weakened) northeast monsoon associated with the anomalous atmospheric cyclone (anticyclone) in the western North Pacific during La Niña (El Niño) years, which inputs more (less) energy and negative vorticity southwest of Taiwan that is favorable (unfavorable) for the development of KLC.

Free access
Tian Zhou, Nathalie Voisin, Guoyong Leng, Maoyi Huang, and Ian Kraucunas

Abstract

Water management activities modify water fluxes at the land surface and affect water resources in space and time. Conventional understanding on the role of water management suggests that regulated river flow would be less sensitive to future climate conditions than natural flow in terms of the absolute changes in mean monthly flows. In this study the authors evaluate such an assumption by redefining sensitivity as the difference in the emergence of changes in cumulative distribution functions (CDFs) of future regulated and natural flows in response to climate change with respect to their respective historical regulated and natural flow conditions. The emergence of changes (shift in CDFs) in natural and regulated river flow regimes across the western United States from simulations driven by multiple climate models and scenarios were compared. Forty percent of Hydrologic Unit Codes 4 (HUC4s) over the western United States might perceive such a shift in seasonal regulated flow earlier than they would have seen in natural flow conditions, although the absolute change is smaller than that under natural conditions. About 10% of the regulated HUC4s see a delay and are therefore less sensitive to climate change. In the spring (MAM), the overall sensitivity tends to decrease as the level of river regulation increases, as expected. However, in the winter (DJF) and summer (JJA) seasons, the sensitivity tends to increase with increasing levels of regulation, with changes in smaller magnitudes than under natural conditions. The results could inform integrated assessment studies when designing adaptation strategies in the water–energy–food nexus.

Full access
Xiaodong Huang, Zhaoyun Wang, Zhiwei Zhang, Yunchao Yang, Chun Zhou, Qingxuan Yang, Wei Zhao, and Jiwei Tian

Abstract

The role of mesoscale eddies in modulating the semidiurnal internal tide (SIT) in the northern South China Sea (SCS) is examined using the data from a cross-shaped mooring array. From November 2013 to January 2014, an anticyclonic eddy (AE) and cyclonic eddy (CE) pair crossed the westward SIT beam originating in Luzon Strait. Observations showed that, because of the current and stratification modulations by the eddy pair, the propagation speed of the mode-1 SIT sped up (slowed down) by up to 0.7 m s−1 (0.4 m s−1) within the AE’s (CE’s) southern portion. As a result of the spatially varying phase speed, the mode-1 SIT wave crest was clockwise rotated (counterclockwise rotated) within the AE (CE) core, while it exhibited convex and concave (concave and convex) patterns on the southern and northern peripheries of the AE (CE), respectively. In mid-to-late November, most of the mode-1 SIT energy was refracted by the AE away from Dongsha Island toward the north part of the northern SCS, which resulted in enhanced internal solitary waves (ISWs) there. Corresponding to the energy refraction, responses of the depth-integrated mode-1 SIT energy to the eddies were generally in phase at the along-beam-direction moorings but out of phase in the south and north parts of the northern SCS at the cross-beam-direction moorings. From late December to early January, intensified mode-2 SIT was observed, whose energy was likely transferred from the mode-1 SIT through eddy–wave interactions. The observation results reported here are helpful to improve the capability to predict internal tides and ISWs in the northern SCS.

Full access
Liming Zhou, Yuhong Tian, Haishan Chen, Yongjiu Dai, and Ronald A. Harris

Abstract

This paper uses the empirical orthogonal function (EOF) analysis to decompose satellite-derived nighttime land surface temperature (LST) for the period of 2003–11 into spatial patterns of different scales and thus to identify whether (i) there is a pattern of LST change associated with the development of wind farms and (ii) the warming effect over wind farms reported previously is an artifact of varied surface topography. Spatial pattern and time series analysis methods are also used to supplement and compare with the EOF results. Two equal-sized regions with similar topography in west-central Texas are chosen to represent the wind farm region (WFR) and nonwind farm region (NWFR), respectively. Results indicate that the nighttime warming effect seen in the first mode (EOF1) in WFR very likely represents the wind farm impacts due to its spatial coupling with the wind turbines, which are generally built on topographic high ground. The time series associated with the EOF1 mode in WFR also shows a persistent upward trend over wind farms from 2003 to 2011, corresponding to the increase of operating wind turbines with time. Also, the wind farm pixels show a warming effect that differs statistically significantly from their upwind high-elevation pixels and their downwind nonwind farm pixels at similar elevations, and this warming effect decreases with elevation. In contrast, NWFR shows a decrease in LST with increasing surface elevation and no warming effects over high-elevation ridges, indicating that the presence of wind farms in WFR has changed the LST–elevation relationship shown in NWFR. The elevation impacts on Moderate Resolution Imaging Spectroradiometer (MODIS) LST, if any, are much smaller and statistically insignificant than the strong and persistent signal of wind farm impacts. These results provide further observational evidence of the warming effect of wind farms reported previously.

Full access