Search Results
You are looking at 1 - 10 of 16 items for
- Author or Editor: Tilden Meyers x
- Refine by Access: All Content x
Abstract
Recent work has shown that bulk-Richardson (Ri b ) parameterizations for friction velocity, sensible heat flux, and latent heat flux have similar, and in some instances better, performance than long-standing parameterizations from Monin–Obukhov similarity theory (MOST). In this work, we expanded upon new Ri b parameterizations and developed parameterizations of turbulence statistics, i.e., standard deviations in the 30-min u (horizontal), υ (meridional), and w (vertical) wind components (i.e., σu , συ , and σw , respectively), which allowed us to derive Ri b -based parameterizations of turbulent kinetic energy (e), and standard deviations in the 30-min temperature and moisture measurements (σθ and σq , respectively). We used datasets from three 10-m micrometeorological towers installed during the Land Atmosphere Feedback Experiment (LAFE) conducted in Oklahoma from 1 to 31 August 2017 and evaluated the new parameterizations by comparing them against parameterizations from MOST. We used the LAFE datasets and fully independent datasets obtained from two micrometeorological towers installed in Alabama between February 2016 and April 2017 to evaluate the performance of the parameterizations. Based on the slope of the relationship between the observed and parameterized turbulence statistics (mb ) and the coefficient of correlation (r), we found that the Ri b relationships generally performed better than MOST at parameterizing συ , σw , σθ , and σq , and the Ri b relationships performed better at low wind speeds than at high wind speeds. These results, coupled with recent developments of Ri b parameterizations for surface-layer momentum, heat, and moisture fluxes, provide further evidence to consider using Ri b -based parameterizations in weather forecasting models.
Significance Statement
Deficiencies in Monin–Obukhov similarity theory (MOST) are well known, yet MOST forms the basis in weather forecasting models for describing heat, moisture, and momentum transfer between the land surface and atmosphere. We expanded upon previous work suggesting a MOST alternative called the bulk-Richardson approach. We used data collected from meteorological towers installed in Oklahoma and compared the bulk-Richardson approach with MOST. We evaluated these two approaches using data from meteorological towers installed in Oklahoma and Alabama and found that, overall, the bulk-Richardson approach performed better than MOST in determining the 30-min variability in temperature, moisture, and wind. This result provides additional motivation to use a bulk-Richardson approach in weather forecasting models because doing so will likely yield improved forecasts.
Abstract
Recent work has shown that bulk-Richardson (Ri b ) parameterizations for friction velocity, sensible heat flux, and latent heat flux have similar, and in some instances better, performance than long-standing parameterizations from Monin–Obukhov similarity theory (MOST). In this work, we expanded upon new Ri b parameterizations and developed parameterizations of turbulence statistics, i.e., standard deviations in the 30-min u (horizontal), υ (meridional), and w (vertical) wind components (i.e., σu , συ , and σw , respectively), which allowed us to derive Ri b -based parameterizations of turbulent kinetic energy (e), and standard deviations in the 30-min temperature and moisture measurements (σθ and σq , respectively). We used datasets from three 10-m micrometeorological towers installed during the Land Atmosphere Feedback Experiment (LAFE) conducted in Oklahoma from 1 to 31 August 2017 and evaluated the new parameterizations by comparing them against parameterizations from MOST. We used the LAFE datasets and fully independent datasets obtained from two micrometeorological towers installed in Alabama between February 2016 and April 2017 to evaluate the performance of the parameterizations. Based on the slope of the relationship between the observed and parameterized turbulence statistics (mb ) and the coefficient of correlation (r), we found that the Ri b relationships generally performed better than MOST at parameterizing συ , σw , σθ , and σq , and the Ri b relationships performed better at low wind speeds than at high wind speeds. These results, coupled with recent developments of Ri b parameterizations for surface-layer momentum, heat, and moisture fluxes, provide further evidence to consider using Ri b -based parameterizations in weather forecasting models.
Significance Statement
Deficiencies in Monin–Obukhov similarity theory (MOST) are well known, yet MOST forms the basis in weather forecasting models for describing heat, moisture, and momentum transfer between the land surface and atmosphere. We expanded upon previous work suggesting a MOST alternative called the bulk-Richardson approach. We used data collected from meteorological towers installed in Oklahoma and compared the bulk-Richardson approach with MOST. We evaluated these two approaches using data from meteorological towers installed in Oklahoma and Alabama and found that, overall, the bulk-Richardson approach performed better than MOST in determining the 30-min variability in temperature, moisture, and wind. This result provides additional motivation to use a bulk-Richardson approach in weather forecasting models because doing so will likely yield improved forecasts.
Abstract
Monin–Obukhov similarity theory (MOST) has long been used to represent surface–atmosphere exchange in numerical weather prediction (NWP) models. However, recent work has shown that bulk Richardson (Ri b ) parameterizations, rather than traditional MOST formulations, better represent near-surface wind, temperature, and moisture gradients. So far, this work has only been applied to unstable atmospheric regimes. In this study, we extended Ri b parameterizations to stable regimes and developed parameterizations for the friction velocity (u *), sensible heat flux (H), and latent heat flux (E) using datasets from the Land-Atmosphere Feedback Experiment (LAFE). We tested our new Ri b parameterizations using datasets from the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE) and compared the new Ri b parameterizations with traditional MOST parameterizations and MOST parameterizations obtained using the LAFE datasets. We found that fitting coefficients in the MOST parameterizations developed from LAFE datasets differed from the fitting coefficients in classical MOST parameterizations which we attributed to the land surface heterogeneity present in the LAFE domain. Regardless, the new Ri b parameterizations performed just as well as, and in some instances better than, the classical MOST parameterizations and the MOST parameterizations developed from the LAFE datasets. The improvement was most evident for H, particularly for H under unstable conditions, which was based on a better 1:1 relationship between the parameterized and observed values. These findings provide motivation to transition away from MOST and to implement bulk Richardson parameterizations into NWP models to represent surface–atmosphere exchange.
Abstract
Monin–Obukhov similarity theory (MOST) has long been used to represent surface–atmosphere exchange in numerical weather prediction (NWP) models. However, recent work has shown that bulk Richardson (Ri b ) parameterizations, rather than traditional MOST formulations, better represent near-surface wind, temperature, and moisture gradients. So far, this work has only been applied to unstable atmospheric regimes. In this study, we extended Ri b parameterizations to stable regimes and developed parameterizations for the friction velocity (u *), sensible heat flux (H), and latent heat flux (E) using datasets from the Land-Atmosphere Feedback Experiment (LAFE). We tested our new Ri b parameterizations using datasets from the Verification of the Origins of Rotation in Tornadoes Experiment-Southeast (VORTEX-SE) and compared the new Ri b parameterizations with traditional MOST parameterizations and MOST parameterizations obtained using the LAFE datasets. We found that fitting coefficients in the MOST parameterizations developed from LAFE datasets differed from the fitting coefficients in classical MOST parameterizations which we attributed to the land surface heterogeneity present in the LAFE domain. Regardless, the new Ri b parameterizations performed just as well as, and in some instances better than, the classical MOST parameterizations and the MOST parameterizations developed from the LAFE datasets. The improvement was most evident for H, particularly for H under unstable conditions, which was based on a better 1:1 relationship between the parameterized and observed values. These findings provide motivation to transition away from MOST and to implement bulk Richardson parameterizations into NWP models to represent surface–atmosphere exchange.
Abstract
The High-Resolution Rapid Refresh (HRRR) model became operational at the National Centers for Environmental Prediction (NCEP) in 2014 but the HRRR’s performance over certain regions of the coterminous United States has not been well studied. In the present study, we evaluated how well version 2 of the HRRR, which became operational at NCEP in August 2016, simulates the near-surface meteorological fields and the surface energy balance at two locations in northern Alabama. We evaluated the 1-, 3-, 6-, 12-, and 18-h HRRR forecasts, as well as the HRRR’s initial conditions (i.e., the 0-h initial fields) using meteorological and flux observations obtained from two 10-m micrometeorological towers installed near Belle Mina and Cullman, Alabama. During the 8-month model evaluation period, from 1 September 2016 to 30 April 2017, we found that the HRRR accurately simulated the observations of near-surface air and dewpoint temperature (R 2 > 0.95). When comparing the HRRR output with the observed sensible, latent, and ground heat flux at both sites, we found that the agreement was weaker (R 2 ≈ 0.7), and the root-mean-square errors were much larger than those found for the near-surface meteorological variables. These findings help motivate the need for additional work to improve the representation of surface fluxes and their coupling to the atmosphere in future versions of the HRRR to be more physically realistic.
Abstract
The High-Resolution Rapid Refresh (HRRR) model became operational at the National Centers for Environmental Prediction (NCEP) in 2014 but the HRRR’s performance over certain regions of the coterminous United States has not been well studied. In the present study, we evaluated how well version 2 of the HRRR, which became operational at NCEP in August 2016, simulates the near-surface meteorological fields and the surface energy balance at two locations in northern Alabama. We evaluated the 1-, 3-, 6-, 12-, and 18-h HRRR forecasts, as well as the HRRR’s initial conditions (i.e., the 0-h initial fields) using meteorological and flux observations obtained from two 10-m micrometeorological towers installed near Belle Mina and Cullman, Alabama. During the 8-month model evaluation period, from 1 September 2016 to 30 April 2017, we found that the HRRR accurately simulated the observations of near-surface air and dewpoint temperature (R 2 > 0.95). When comparing the HRRR output with the observed sensible, latent, and ground heat flux at both sites, we found that the agreement was weaker (R 2 ≈ 0.7), and the root-mean-square errors were much larger than those found for the near-surface meteorological variables. These findings help motivate the need for additional work to improve the representation of surface fluxes and their coupling to the atmosphere in future versions of the HRRR to be more physically realistic.
Abstract
The performance of version 4 of the NOAA High-Resolution Rapid Refresh (HRRR) numerical weather prediction model for near-surface variables, including wind, humidity, temperature, surface latent and sensible fluxes, and longwave and shortwave radiative fluxes, is examined over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) region. The study evaluated the model’s bias and bias-corrected mean absolute error relative to the observations on different time scales. Forecasts of near-surface geophysical variables at five SGP sites (HRRR at 3-km scale) were found to agree well with observations, but some consistent observation–forecast differences also occurred. Sensible and latent heat fluxes are the most challenging variables to be reproduced. The diurnal cycle is the main temporal scale affecting observation–forecast differences of the near-surface variables, and almost all of the variables showed different biases throughout the diurnal cycle. Results show that the overestimation of downward shortwave and the underestimation of downward longwave radiative flux are the two major biases found in this study. The timing and magnitude of downward longwave flux, wind speed, and sensible and latent heat fluxes are also different with contributions from model representations, data assimilation limitations, and differences in scales between HRRR and SGP sites. The positive bias in downward shortwave and negative bias in longwave radiation suggests that the model is underestimating cloud fraction in the study domain. The study concludes by showing a brief comparison with version 3 of the HRRR and shows that version 4 has better performance in almost all near-surface variables.
Significance Statement
A correct representation of the near-surface variables is important for numerical weather prediction models. This study investigates the capability of the latest NOAA High-Resolution Rapid Refresh (HRRRv4) model in simulating the near-surface variables by comparing against the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) in situ observations. Among others, we find that the surface heat fluxes, such as sensible and latent heat fluxes, are the most difficult variables to be reproduced. This study also shows that the diurnal cycle has the dominant impact on the model’s performance, which means the majority of the outputted near-surface variables have the strong diurnal cycle in their bias errors.
Abstract
The performance of version 4 of the NOAA High-Resolution Rapid Refresh (HRRR) numerical weather prediction model for near-surface variables, including wind, humidity, temperature, surface latent and sensible fluxes, and longwave and shortwave radiative fluxes, is examined over the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) region. The study evaluated the model’s bias and bias-corrected mean absolute error relative to the observations on different time scales. Forecasts of near-surface geophysical variables at five SGP sites (HRRR at 3-km scale) were found to agree well with observations, but some consistent observation–forecast differences also occurred. Sensible and latent heat fluxes are the most challenging variables to be reproduced. The diurnal cycle is the main temporal scale affecting observation–forecast differences of the near-surface variables, and almost all of the variables showed different biases throughout the diurnal cycle. Results show that the overestimation of downward shortwave and the underestimation of downward longwave radiative flux are the two major biases found in this study. The timing and magnitude of downward longwave flux, wind speed, and sensible and latent heat fluxes are also different with contributions from model representations, data assimilation limitations, and differences in scales between HRRR and SGP sites. The positive bias in downward shortwave and negative bias in longwave radiation suggests that the model is underestimating cloud fraction in the study domain. The study concludes by showing a brief comparison with version 3 of the HRRR and shows that version 4 has better performance in almost all near-surface variables.
Significance Statement
A correct representation of the near-surface variables is important for numerical weather prediction models. This study investigates the capability of the latest NOAA High-Resolution Rapid Refresh (HRRRv4) model in simulating the near-surface variables by comparing against the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) in situ observations. Among others, we find that the surface heat fluxes, such as sensible and latent heat fluxes, are the most difficult variables to be reproduced. This study also shows that the diurnal cycle has the dominant impact on the model’s performance, which means the majority of the outputted near-surface variables have the strong diurnal cycle in their bias errors.
Abstract
The ability of high-resolution mesoscale models to simulate near-surface and subsurface meteorological processes is critical for representing land–atmosphere feedback processes. The High-Resolution Rapid Refresh (HRRR) model is a 3-km numerical weather prediction model that has been used operationally since 2014. In this study, we evaluated the HRRR over the contiguous United States from 1 January 2021 to 31 December 2021. We compared the 1-, 3-, 6-, 12-, 18-, 24-, 30-, and 48-h forecasts against observations of air and surface temperature, shortwave radiation, and soil temperature and moisture from the 114 stations of the U.S. Climate Reference Network (USCRN) and evaluated the HRRR’s performance for different geographic regions and land cover types. We found that the HRRR well simulated air and surface temperatures, but underestimated soil temperatures when temperatures were subfreezing. The HRRR had the largest overestimates in shortwave radiation under cloudy skies, and there was a positive relationship between the shortwave radiation mean bias error (MBE) and air temperature MBE that was stronger in summer than winter. Additionally, the HRRR underestimated soil moisture when the values exceeded about 0.2 m3 m−3, but overestimated soil moisture when measurements were below this value. Consequently, the HRRR exhibited a positive soil moisture MBE over the drier areas of the western United States and a negative MBE over the eastern United States. Although caution is needed when applying conclusions regarding HRRR’s biases to locations with subgrid-scale land cover variations, general knowledge of HRRR’s biases will help guide improvements to land surface models used in high-resolution weather forecasting models.
Significance Statement
Weather forecasters rely upon output from many different models. However, the models’ ability to represent processes happening near the land surface over short time scales is critical for producing accurate weather forecasts. In this study, we evaluated the High-Resolution Rapid Refresh (HRRR) model using observations from the U.S. Climate Reference Network, which currently includes 114 reference climate observing stations in the contiguous United States. These stations provide highly accurate measurements of air temperature, precipitation, soil temperature, and soil moisture. Our findings helped illustrate conditions when the HRRR performs well, but also conditions in which the HRRR can be improved, which we expect will motivate ongoing improvements to the HRRR and other weather forecasting models.
Abstract
The ability of high-resolution mesoscale models to simulate near-surface and subsurface meteorological processes is critical for representing land–atmosphere feedback processes. The High-Resolution Rapid Refresh (HRRR) model is a 3-km numerical weather prediction model that has been used operationally since 2014. In this study, we evaluated the HRRR over the contiguous United States from 1 January 2021 to 31 December 2021. We compared the 1-, 3-, 6-, 12-, 18-, 24-, 30-, and 48-h forecasts against observations of air and surface temperature, shortwave radiation, and soil temperature and moisture from the 114 stations of the U.S. Climate Reference Network (USCRN) and evaluated the HRRR’s performance for different geographic regions and land cover types. We found that the HRRR well simulated air and surface temperatures, but underestimated soil temperatures when temperatures were subfreezing. The HRRR had the largest overestimates in shortwave radiation under cloudy skies, and there was a positive relationship between the shortwave radiation mean bias error (MBE) and air temperature MBE that was stronger in summer than winter. Additionally, the HRRR underestimated soil moisture when the values exceeded about 0.2 m3 m−3, but overestimated soil moisture when measurements were below this value. Consequently, the HRRR exhibited a positive soil moisture MBE over the drier areas of the western United States and a negative MBE over the eastern United States. Although caution is needed when applying conclusions regarding HRRR’s biases to locations with subgrid-scale land cover variations, general knowledge of HRRR’s biases will help guide improvements to land surface models used in high-resolution weather forecasting models.
Significance Statement
Weather forecasters rely upon output from many different models. However, the models’ ability to represent processes happening near the land surface over short time scales is critical for producing accurate weather forecasts. In this study, we evaluated the High-Resolution Rapid Refresh (HRRR) model using observations from the U.S. Climate Reference Network, which currently includes 114 reference climate observing stations in the contiguous United States. These stations provide highly accurate measurements of air temperature, precipitation, soil temperature, and soil moisture. Our findings helped illustrate conditions when the HRRR performs well, but also conditions in which the HRRR can be improved, which we expect will motivate ongoing improvements to the HRRR and other weather forecasting models.
Abstract
Surface-layer parameterizations for heat, mass, momentum, and turbulence exchange are a critical component of the land surface models (LSMs) used in weather prediction and climate models. Although formulations derived from Monin–Obukhov similarity theory (MOST) have long been used, bulk Richardson (Ri
b
) parameterizations have recently been suggested as a MOST alternative but have been evaluated over a limited number of land-cover and climate types. Examining the parameterizations’ applicability over other regions, particularly drylands that cover approximately 41% of terrestrial land surfaces, is a critical step toward implementing the parameterizations into LSMs. One year (1 January–31 December 2018) of eddy covariance measurements from a 10-m tower in southeastern Arizona and a 200-m tower in western Texas were used to determine how well the Ri
b
parameterizations for friction velocity (
Significance Statement
Weather forecasting models rely upon complex mathematical relationships to predict temperature, wind, and moisture. Monin–Obukhov similarity theory (MOST) has long been used to forecast these quantities near the land surface, even though MOST’s limitations are well known in the scientific community. Researchers have suggested an alternative to MOST called the bulk Richardson (Ri b ) approach. To allow for the Ri b approach to be used in weather forecasting models, the approach needs to be tested over different land-cover and climate types. In this study, we applied the Ri b approach to dry areas of the United States and found that the approach better represented turbulence variables than MOST relationships. These findings are an important step toward using Ri b relationships in weather forecasting models.
Abstract
Surface-layer parameterizations for heat, mass, momentum, and turbulence exchange are a critical component of the land surface models (LSMs) used in weather prediction and climate models. Although formulations derived from Monin–Obukhov similarity theory (MOST) have long been used, bulk Richardson (Ri
b
) parameterizations have recently been suggested as a MOST alternative but have been evaluated over a limited number of land-cover and climate types. Examining the parameterizations’ applicability over other regions, particularly drylands that cover approximately 41% of terrestrial land surfaces, is a critical step toward implementing the parameterizations into LSMs. One year (1 January–31 December 2018) of eddy covariance measurements from a 10-m tower in southeastern Arizona and a 200-m tower in western Texas were used to determine how well the Ri
b
parameterizations for friction velocity (
Significance Statement
Weather forecasting models rely upon complex mathematical relationships to predict temperature, wind, and moisture. Monin–Obukhov similarity theory (MOST) has long been used to forecast these quantities near the land surface, even though MOST’s limitations are well known in the scientific community. Researchers have suggested an alternative to MOST called the bulk Richardson (Ri b ) approach. To allow for the Ri b approach to be used in weather forecasting models, the approach needs to be tested over different land-cover and climate types. In this study, we applied the Ri b approach to dry areas of the United States and found that the approach better represented turbulence variables than MOST relationships. These findings are an important step toward using Ri b relationships in weather forecasting models.
This paper presents recent efforts to understand the relative accuracies of different instrumentation and gauges with various windshield configurations to measure snowfall. Results from the National Center for Atmospheric Research (NCAR) Marshall Field Site will be highlighted. This site hosts a test bed to assess various solid precipitation measurement techniques and is a joint collaboration between the National Oceanic and Atmospheric Administration (NOAA), NCAR, the National Weather Service (NWS), and Federal Aviation Administration (FAA). The collaboration involves testing new gauges and other solid precipitation measurement techniques in comparison with World Meteorological Organization (WMO) reference snowfall measurements. This assessment is critical for any ongoing studies and applications, such as climate monitoring and aircraft deicing, that rely on accurate and consistent precipitation measurements.
This paper presents recent efforts to understand the relative accuracies of different instrumentation and gauges with various windshield configurations to measure snowfall. Results from the National Center for Atmospheric Research (NCAR) Marshall Field Site will be highlighted. This site hosts a test bed to assess various solid precipitation measurement techniques and is a joint collaboration between the National Oceanic and Atmospheric Administration (NOAA), NCAR, the National Weather Service (NWS), and Federal Aviation Administration (FAA). The collaboration involves testing new gauges and other solid precipitation measurement techniques in comparison with World Meteorological Organization (WMO) reference snowfall measurements. This assessment is critical for any ongoing studies and applications, such as climate monitoring and aircraft deicing, that rely on accurate and consistent precipitation measurements.
Abstract
The Priestley–Taylor (PT) approximation for computing evapotranspiration was initially developed for conditions of a horizontally uniform saturated surface sufficiently extended to obviate any significant advection of energy. Nevertheless, the PT approach has been effectively implemented within the framework of a thermal-based two-source model (TSM) of the surface energy balance, yielding reasonable latent heat flux estimates over a range in vegetative cover and climate conditions. In the TSM, however, the PT approach is applied only to the canopy component of the latent heat flux, which may behave more conservatively than the bulk (soil + canopy) system. The objective of this research is to investigate the response of the canopy and bulk PT parameters to varying leaf area index (LAI) and vapor pressure deficit (VPD) in both natural and agricultural vegetated systems, to better understand the utility and limitations of this approximation within the context of the TSM. Micrometeorological flux measurements collected at multiple sites under a wide range of atmospheric conditions were used to implement an optimization scheme, assessing the value of the PT parameter for best performance of the TSM. Overall, the findings suggest that within the context of the TSM, the optimal canopy PT coefficient for agricultural crops appears to have a fairly conservative value of ∼1.2 except when under very high vapor pressure deficit (VPD) conditions, when its value increases. For natural vegetation (primarily grasslands), the optimal canopy PT coefficient assumed lower values on average (∼0.9) and dropped even further at high values of VPD. This analysis provides some insight as to why the PT approach, initially developed for regional estimates of potential evapotranspiration, can be used successfully in the TSM scheme to yield reliable heat flux estimates over a variety of land cover types.
Abstract
The Priestley–Taylor (PT) approximation for computing evapotranspiration was initially developed for conditions of a horizontally uniform saturated surface sufficiently extended to obviate any significant advection of energy. Nevertheless, the PT approach has been effectively implemented within the framework of a thermal-based two-source model (TSM) of the surface energy balance, yielding reasonable latent heat flux estimates over a range in vegetative cover and climate conditions. In the TSM, however, the PT approach is applied only to the canopy component of the latent heat flux, which may behave more conservatively than the bulk (soil + canopy) system. The objective of this research is to investigate the response of the canopy and bulk PT parameters to varying leaf area index (LAI) and vapor pressure deficit (VPD) in both natural and agricultural vegetated systems, to better understand the utility and limitations of this approximation within the context of the TSM. Micrometeorological flux measurements collected at multiple sites under a wide range of atmospheric conditions were used to implement an optimization scheme, assessing the value of the PT parameter for best performance of the TSM. Overall, the findings suggest that within the context of the TSM, the optimal canopy PT coefficient for agricultural crops appears to have a fairly conservative value of ∼1.2 except when under very high vapor pressure deficit (VPD) conditions, when its value increases. For natural vegetation (primarily grasslands), the optimal canopy PT coefficient assumed lower values on average (∼0.9) and dropped even further at high values of VPD. This analysis provides some insight as to why the PT approach, initially developed for regional estimates of potential evapotranspiration, can be used successfully in the TSM scheme to yield reliable heat flux estimates over a variety of land cover types.
Abstract
The U.S. Climate Reference Network (USCRN) is a network of climate-monitoring stations maintained and operated by the National Oceanic and Atmospheric Administration (NOAA) to provide climate-science-quality measurements of air temperature and precipitation. The stations in the network were designed to be extensible to other missions, and the National Integrated Drought Information System program determined that the USCRN could be augmented to provide observations that are more drought relevant. To increase the network’s capability of monitoring soil processes and drought, soil observations were added to USCRN instrumentation. In 2011, the USCRN team completed at each USCRN station in the conterminous United States the installation of triplicate-configuration soil moisture and soil temperature probes at five standards depths (5, 10, 20, 50, and 100 cm) as prescribed by the World Meteorological Organization; in addition, the project included the installation of a relative humidity sensor at each of the stations. Work is also under way to eventually install soil sensors at the expanding USCRN stations in Alaska. USCRN data are stewarded by the NOAA National Climatic Data Center, and instrument engineering and performance studies, installation, and maintenance are performed by the NOAA Atmospheric Turbulence and Diffusion Division. This article provides a technical description of the USCRN soil observations in the context of U.S. soil-climate–measurement efforts and discusses the advantage of the triple-redundancy approach applied by the USCRN.
Abstract
The U.S. Climate Reference Network (USCRN) is a network of climate-monitoring stations maintained and operated by the National Oceanic and Atmospheric Administration (NOAA) to provide climate-science-quality measurements of air temperature and precipitation. The stations in the network were designed to be extensible to other missions, and the National Integrated Drought Information System program determined that the USCRN could be augmented to provide observations that are more drought relevant. To increase the network’s capability of monitoring soil processes and drought, soil observations were added to USCRN instrumentation. In 2011, the USCRN team completed at each USCRN station in the conterminous United States the installation of triplicate-configuration soil moisture and soil temperature probes at five standards depths (5, 10, 20, 50, and 100 cm) as prescribed by the World Meteorological Organization; in addition, the project included the installation of a relative humidity sensor at each of the stations. Work is also under way to eventually install soil sensors at the expanding USCRN stations in Alaska. USCRN data are stewarded by the NOAA National Climatic Data Center, and instrument engineering and performance studies, installation, and maintenance are performed by the NOAA Atmospheric Turbulence and Diffusion Division. This article provides a technical description of the USCRN soil observations in the context of U.S. soil-climate–measurement efforts and discusses the advantage of the triple-redundancy approach applied by the USCRN.
Abstract
Accurate snowfall measurements are necessary for meteorology, hydrology, and climate research. Typical uses include creating and calibrating gridded precipitation products, the verification of model simulations, driving hydrologic models, input into aircraft deicing processes, and estimating streamflow runoff in the spring. These applications are significantly impacted by errors in solid precipitation measurements. The recent WMO Solid Precipitation Intercomparison Experiment (SPICE) attempted to characterize and reduce some of the measurement uncertainties through an international effort involving 15 countries utilizing over 20 types and models of precipitation gauges from various manufacturers. Key results from WMO-SPICE are presented herein. Recent work and future research opportunities that build on the results of WMO-SPICE are also highlighted.
Abstract
Accurate snowfall measurements are necessary for meteorology, hydrology, and climate research. Typical uses include creating and calibrating gridded precipitation products, the verification of model simulations, driving hydrologic models, input into aircraft deicing processes, and estimating streamflow runoff in the spring. These applications are significantly impacted by errors in solid precipitation measurements. The recent WMO Solid Precipitation Intercomparison Experiment (SPICE) attempted to characterize and reduce some of the measurement uncertainties through an international effort involving 15 countries utilizing over 20 types and models of precipitation gauges from various manufacturers. Key results from WMO-SPICE are presented herein. Recent work and future research opportunities that build on the results of WMO-SPICE are also highlighted.