Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Timothy A. Smith x
  • All content x
Clear All Modify Search
Timothy Smith and Patrick Heimbach

Abstract

Insights from the RAPID–MOCHA observation network in the North Atlantic have motivated a recent focus on the South Atlantic, where water masses are exchanged with neighboring ocean basins. In this study, variability in the South Atlantic meridional overturning circulation (SAMOC) at 34°S is attributed to global atmospheric forcing using an inverse modeling approach. The sensitivity of the SAMOC to atmospheric state variables is computed with the adjoint of the Massachusetts Institute of Technology general circulation model, which is fit to 20 years of observational data in a dynamically consistent framework. The dynamical pathways highlighted by these sensitivity patterns show that the domain of influence for the SAMOC is broad, covering neighboring ocean basins even on short time scales. This result differs from what has previously been shown in the North Atlantic, where Atlantic meridional overturning circulation (AMOC) variability is largely governed by dynamics confined to that basin. The computed sensitivities are convolved with surface atmospheric state variability from ERA-Interim to attribute the influence of each external forcing variable (e.g., wind stress, precipitation) on the SAMOC from 1992 to 2011. Here, local wind stress perturbations are shown to dominate variability on seasonal time scales while buoyancy forcing plays a minor role, confirming results from past forward perturbation experiments. Interannual variability, however, is shown to have originated from remote locations across the globe, including a nontrivial component originating from the tropical Pacific. The influence of atmospheric forcing emphasizes the importance of continuous widespread observations of the global atmospheric state for attributing observed AMOC variability.

Open access
Timothy L. Wilfong, Steve A. Smith, and Christy L. Crosiar

Abstract

Results are presented from an investigation to estimate the limiting accuracy of atmospheric wind measurements obtained from a radar-tracked jimsphere and the data reduction program. The current system used to support space launches includes the jimsphere balloon, the radar, and the data processing system. Characteristics of the derived wind profiles are examined by spectral analysis of the radar tracking data and the derived wind profiles. Consistent with earlier work, the quality of the resulting wind profile is found to depend on the slant range of the balloon. In the current data processing systems, however, no explicit attempt is made to remove the effect of the regular oscillation of the jimsphere. The limiting accuracy of the system at low altitudes is found to be the result of aliased self-induced balloon motion in the wind profile. The magnitude of the error resulting from the aliased balloon oscillation decreases from 0.5 m s−1 near the surface to near zero at about 12 km in proportion to the jimsphere rise rate. Radar noise adds to the errors in the wind profile and increases with slant range. For independent layer averages of about 30 m, the resulting accuracy is 0.5–0.7 m s−1 in most tracking conditions. The effective vertical resolution of the system is found to increase in magnitude with altitude and slant range. Near the surface it is possible to resolve vertical features on the order of 150 m. At altitudes over 12 km at long slant ranges the effective vertical resolution decreases to 300 m.

Full access
Marysa M. Laguë, Marianne Pietschnig, Sarah Ragen, Timothy A. Smith, and David S. Battisti

Abstract

Motivated by the hemispheric asymmetry of land distribution on Earth, we explore the climate of Northland, a highly idealized planet with a Northern Hemisphere continent and a Southern Hemisphere ocean. The climate of Northland can be separated into four distinct regions: the Southern Hemisphere ocean, the seasonally wet tropics, the mid-latitude desert, and the Great Northern Swamp. We evaluate how modifying land surface properties on Northland drives changes in temperatures, precipitation patterns, the global energy budget, and atmospheric dynamics. We observe a surprising response to changes in land-surface evaporation, where suppressing terrestrial evaporation in Northland cools both land and ocean. In previous studies, suppressing terrestrial evaporation has been found to lead to local warming by reducing latent cooling of the land surface. However, reduced evaporation can also decrease atmospheric water vapor, reducing the strength of the greenhouse effect and leading to large-scale cooling. We use a set of idealized climate model simulations to show that suppressing terrestrial evaporation over Northern Hemisphere continents of varying size can lead to either warming or cooling of the land surface, depending on which of these competing effects dominate. We find that a combination of total land area and contiguous continent size controls the balance between local warming from reduced latent heat flux and large-scale cooling from reduced atmospheric water vapor. Finally, we demonstrate how terrestrial heat capacity, albedo, and evaporation all modulate the location of the ITCZ both over the continent and over the ocean.

Restricted access
Ning Lin, James A. Smith, Gabriele Villarini, Timothy P. Marchok, and Mary Lynn Baeck

Abstract

Landfalling tropical cyclones present major hazards for the eastern United States. Hurricane Isabel (September 2003) produced more than $3.3 billion in damages from wind, inland riverine flooding, and storm surge flooding, and resulted in 17 fatalities. Case study analyses of Hurricane Isabel are carried out to investigate multiple hazards from landfalling tropical cyclones. The analyses focus on storm evolution following landfall and center on simulations using the Weather Research and Forecasting Model (WRF). WRF simulations are coupled with the 2D, depth-averaged hydrodynamic Advanced Circulation Model (ADCIRC), to examine storm surge in the Chesapeake Bay. Analyses of heavy rainfall and flooding include an examination of the structure and evolution of extreme rainfall over land. Intercomparisons of simulated rainfall from WRF with Hydro-NEXRAD rainfall fields and observations from rain gauge networks are presented. A particular focus of these analyses is the evolving distribution of rainfall, relative to the center of circulation, as the storm moves over land. Similar analyses are carried out for the wind field of Hurricane Isabel as it moves over the mid-Atlantic region. Outer rainbands, which are not well captured in WRF simulations, played a major role in urban flooding and wind damage, especially for the Baltimore metropolitan region. Wind maxima in outer rainbands may also have played a role in storm surge flooding in the upper Chesapeake Bay.

Full access
Marysa M. Laguë, Marianne Pietschnig, Sarah Ragen, Timothy A. Smith, and David S. Battisti

Abstract

Motivated by the hemispheric asymmetry of land distribution on Earth, we explore the climate of Northland, a highly idealized planet with a Northern Hemisphere continent and a Southern Hemisphere ocean. The climate of Northland can be separated into four distinct regions: the Southern Hemisphere ocean, the seasonally wet tropics, the midlatitude desert, and the Great Northern Swamp. We evaluate how modifying land surface properties on Northland drives changes in temperatures, precipitation patterns, the global energy budget, and atmospheric dynamics. We observe a surprising response to changes in land surface evaporation, where suppressing terrestrial evaporation in Northland cools both land and ocean. In previous studies, suppressing terrestrial evaporation has been found to lead to local warming by reducing latent cooling of the land surface. However, reduced evaporation can also decrease atmospheric water vapor, reducing the strength of the greenhouse effect and leading to large-scale cooling. We use a set of idealized climate model simulations to show that suppressing terrestrial evaporation over Northern Hemisphere continents of varying size can lead to either warming or cooling of the land surface, depending on which of these competing effects dominates. We find that a combination of total land area and contiguous continent size controls the balance between local warming from reduced latent heat flux and large-scale cooling from reduced atmospheric water vapor. Finally, we demonstrate how terrestrial heat capacity, albedo, and evaporation all modulate the location of the ITCZ both over the continent and over the ocean.

Restricted access
Michael T. Montgomery, Christopher Davis, Timothy Dunkerton, Zhuo Wang, Christopher Velden, Ryan Torn, Sharanya J. Majumdar, Fuqing Zhang, Roger K. Smith, Lance Bosart, Michael M. Bell, Jennifer S. Haase, Andrew Heymsfield, Jorgen Jensen, Teresa Campos, and Mark A. Boothe

The principal hypotheses of a new model of tropical cyclogenesis, known as the marsupial paradigm, were tested in the context of Atlantic tropical disturbances during the National Science Foundation (NSF)-sponsored Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) experiment in 2010. PREDICT was part of a tri-agency collaboration, along with the National Aeronautics and Space Administration's Genesis and Rapid Intensification Processes (NASA GRIP) experiment and the National Oceanic and Atmospheric Administration's Intensity Forecasting Experiment (NOAA IFEX), intended to examine both developing and nondeveloping tropical disturbances.

During PREDICT, a total of 26 missions were flown with the NSF/NCAR Gulfstream V (GV) aircraft sampling eight tropical disturbances. Among these were four cases (Fiona, ex-Gaston, Karl, and Matthew) for which three or more missions were conducted, many on consecutive days. Because of the scientific focus on the Lagrangian nature of the tropical cyclogenesis process, a wave-relative frame of reference was adopted throughout the experiment in which various model- and satellite-based products were examined to guide aircraft planning and real-time operations. Here, the scientific products and examples of data collected are highlighted for several of the disturbances. The suite of cases observed represents arguably the most comprehensive, self-consistent dataset ever collected on the environment and mesoscale structure of developing and nondeveloping predepression disturbances.

Full access
Amy Solomon, Lisa Goddard, Arun Kumar, James Carton, Clara Deser, Ichiro Fukumori, Arthur M. Greene, Gabriele Hegerl, Ben Kirtman, Yochanan Kushnir, Matthew Newman, Doug Smith, Dan Vimont, Tom Delworth, Gerald A. Meehl, and Timothy Stockdale

Abstract

Given that over the course of the next 10–30 years the magnitude of natural decadal variations may rival that of anthropogenically forced climate change on regional scales, it is envisioned that initialized decadal predictions will provide important information for climate-related management and adaptation decisions. Such predictions are presently one of the grand challenges for the climate community. This requires identifying those physical phenomena—and their model equivalents—that may provide additional predictability on decadal time scales, including an assessment of the physical processes through which anthropogenic forcing may interact with or project upon natural variability. Such a physical framework is necessary to provide a consistent assessment (and insight into potential improvement) of the decadal prediction experiments planned to be assessed as part of the IPCC's Fifth Assessment Report.

Full access

Decadal Prediction

Can It Be Skillful?

Gerald A. Meehl, Lisa Goddard, James Murphy, Ronald J. Stouffer, George Boer, Gokhan Danabasoglu, Keith Dixon, Marco A. Giorgetta, Arthur M. Greene, Ed Hawkins, Gabriele Hegerl, David Karoly, Noel Keenlyside, Masahide Kimoto, Ben Kirtman, Antonio Navarra, Roger Pulwarty, Doug Smith, Detlef Stammer, and Timothy Stockdale

A new field of study, “decadal prediction,” is emerging in climate science. Decadal prediction lies between seasonal/interannual forecasting and longer-term climate change projections, and focuses on time-evolving regional climate conditions over the next 10–30 yr. Numerous assessments of climate information user needs have identified this time scale as being important to infrastructure planners, water resource managers, and many others. It is central to the information portfolio required to adapt effectively to and through climatic changes. At least three factors influence time-evolving regional climate at the decadal time scale: 1) climate change commitment (further warming as the coupled climate system comes into adjustment with increases of greenhouse gases that have already occurred), 2) external forcing, particularly from future increases of greenhouse gases and recovery of the ozone hole, and 3) internally generated variability. Some decadal prediction skill has been demonstrated to arise from the first two of these factors, and there is evidence that initialized coupled climate models can capture mechanisms of internally generated decadal climate variations, thus increasing predictive skill globally and particularly regionally. Several methods have been proposed for initializing global coupled climate models for decadal predictions, all of which involve global time-evolving three-dimensional ocean data, including temperature and salinity. An experimental framework to address decadal predictability/prediction is described in this paper and has been incorporated into the coordinated Coupled Model Intercomparison Model, phase 5 (CMIP5) experiments, some of which will be assessed for the IPCC Fifth Assessment Report (AR5). These experiments will likely guide work in this emerging field over the next 5 yr.

Full access
BRIAN J. BUTTERWORTH, ANKUR R. DESAI, STEFAN METZGER, PHILIP A. TOWNSEND, MARK D. SCHWARTZ, GRANT W. PETTY, MATTHIAS MAUDER, HANNES VOGELMANN, CHRISTIAN G. ANDRESEN, TRAVIS J. AUGUSTINE, TIMOTHY H. BERTRAM, WILLIAM O.J. BROWN, MICHAEL BUBAN, PATRICIA CLEARY, DAVID J. DURDEN, CHRISTOPHER R. FLORIAN, TREVOR J. IGLINSKI, ERIC L. KRUGER, KATHLEEN LANTZ, TEMPLE R. LEE, TILDEN P. MEYERS, JAMES K. MINEAU, ERIK R. OLSON, STEVEN P. ONCLEY, SREENATH PALERI, ROSALYN A. PERTZBORN, CLAIRE PETTERSEN, DAVID M. PLUMMER, LAURA RIIHIMAKI, ELICEO RUIZ GUZMAN, JOSEPH SEDLAR, ELIZABETH N. SMITH, JOHANNES SPEIDEL, PAUL C. STOY, MATTHIAS SÜHRING, JONATHAN E. THOM, DAVID D. TURNER, MICHAEL P. VERMEUEL, TIMOTHY J. WAGNER, ZHIEN WANG, LUISE WANNER, LOREN D. WHITE, JAMES M. WILCZAK, DANIEL B. WRIGHT, and TING ZHENG

CAPSULE SUMMARY

A regional-scale observational experiment designed to address how the atmospheric boundary layer responds to spatial heterogeneity in surface energy fluxes.

Full access
Ian M. Brooks, Margaret J. Yelland, Robert C. Upstill-Goddard, Philip D. Nightingale, Steve Archer, Eric d'Asaro, Rachael Beale, Cory Beatty, Byron Blomquist, A. Anthony Bloom, Barbara J. Brooks, John Cluderay, David Coles, John Dacey, Michael Degrandpre, Jo Dixon, William M. Drennan, Joseph Gabriele, Laura Goldson, Nick Hardman-Mountford, Martin K. Hill, Matt Horn, Ping-Chang Hsueh, Barry Huebert, Gerrit De Leeuw, Timothy G. Leighton, Malcolm Liddicoat, Justin J. N. Lingard, Craig Mcneil, James B. Mcquaid, Ben I. Moat, Gerald Moore, Craig Neill, Sarah J. Norris, Simon O'Doherty, Robin W. Pascal, John Prytherch, Mike Rebozo, Erik Sahlee, Matt Salter, Ute Schuster, Ingunn Skjelvan, Hans Slagter, Michael H. Smith, Paul D. Smith, Meric Srokosz, John A. Stephens, Peter K. Taylor, Maciej Telszewski, Roisin Walsh, Brian Ward, David K. Woolf, Dickon Young, and Henk Zemmelink

Abstract

No Abstract available.

Full access