Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Timothy S. Bates x
  • Refine by Access: All Content x
Clear All Modify Search
Daqing Yang, Barry E. Goodison, John R. Metcalfe, Valentin S. Golubev, Roy Bates, Timothy Pangburn, and Clayton L. Hanson


The standard 8" nonrecording precipitation gauge has been used historically by the National Weather Service (NWS) as the official precipitation measurement instrument of the U.S. climate station network. From 1986 to 1992, the accuracy and performance of this gauge (unshielded or with an Alter shield) were evaluated during the WMO Solid Precipitation Measurement Intercomparison at three stations in the United States and Russia, representing a variety of climate, terrain, and exposure. The double-fence intercomparison reference (DFIR) was the reference standard used at all the intercomparison stations in the Intercomparison project. The Intercomparison data collected at different sites are compatible with respect to the catch ratio (gauge measured/DFIR) for the same gauges, when compared using wind speed at the height of gauge orifice during the observation period.

The effects of environmental factors, such as wind speed and temperature, on the gauge catch were investigated. Wind speed was found to be the most important factor determining gauge catch when precipitation was classified into snow, mixed, and rain. The regression functions of the catch ratio versus wind speed at the gauge height on a daily time step were derived for various types of precipitation. Independent checks of the equations have been conducted at these intercomparison stations and good agreement was obtained. Application of the correction procedures for wind, wetting loss, and trace amounts was made on a daily basis at Barrow, Alaska, for 1982 and 1983, and, on average, the gauge-measured precipitation was increased by 20% for rain and 90% for snow.

Full access
John H. Seinfeld, Gregory R. Carmichael, Richard Arimoto, William C. Conant, Frederick J. Brechtel, Timothy S. Bates, Thomas A. Cahill, Antony D. Clarke, Sarah J. Doherty, Piotr J. Flatau, Barry J. Huebert, Jiyoung Kim, Krzysztof M. Markowicz, Patricia K. Quinn, Lynn M. Russell, Philip B. Russell, Atsushi Shimizu, Yohei Shinozuka, Chul H. Song, Youhua Tang, Itsushi Uno, Andrew M. Vogelmann, Rodney J. Weber, Jung-Hun Woo, and Xiao Y. Zhang

Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass- burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change.

Full access