Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Timothy W. Cronin x
  • All content x
Clear All Modify Search
Timothy W. Cronin

Abstract

Idealized climate modeling studies often choose to neglect spatiotemporal variations in solar radiation, but doing so comes with an important decision about how to average solar radiation in space and time. Since both clear-sky and cloud albedo are increasing functions of the solar zenith angle, one can choose an absorption-weighted zenith angle that reproduces the spatial- or time-mean absorbed solar radiation. Calculations are performed for a pure scattering atmosphere and with a more detailed radiative transfer model and show that the absorption-weighted zenith angle is usually between the daytime-weighted and insolation-weighted zenith angles but much closer to the insolation-weighted zenith angle in most cases, especially if clouds are responsible for much of the shortwave reflection. Use of daytime-average zenith angle may lead to a high bias in planetary albedo of approximately 3%, equivalent to a deficit in shortwave absorption of approximately 10 W m−2 in the global energy budget (comparable to the radiative forcing of a roughly sixfold change in CO2 concentration). Other studies that have used general circulation models with spatially constant insolation have underestimated the global-mean zenith angle, with a consequent low bias in planetary albedo of approximately 2%–6% or a surplus in shortwave absorption of approximately 7–20 W m−2 in the global energy budget.

Full access
Timothy W. Cronin

Abstract

The solar zenith angle controls local insolation and also affects the partitioning of insolation into planetary reflection, atmospheric absorption, and surface absorption. Because of this role of the solar zenith angle in modulating albedo, Cronin and others have proposed that insolation weighting should be used to determine the solar zenith angle when a single-angle calculation is used to represent a spatial or temporal average of solar fluxes. A comment by Li claims instead that daytime weighting is optimal, and that insolation weighting leads to serious errors, but this claim is based on a severe misinterpretation of the method proposed by Cronin. With any method of zenith angle averaging, both the solar constant and the zenith angle are free parameters, but their product—the mean insolation—must be held constant. Li fails to hold insolation constant when comparing different methods of zenith angle averaging and, thus, obtains large but spurious “errors.” This paper attempts to clarify the method proposed by Cronin and tabulates the insolation-weighted solar zenith angle and solar constant that should be used as a function of latitude for annual-average radiative transfer on a planet with Earth’s obliquity and a circular orbit.

Full access
Timothy W. Cronin, Harrison Li, and Eli Tziperman

Abstract

Arctic climate change in winter is tightly linked to changes in the strength of surface temperature inversions, which occur frequently in the present climate as Arctic air masses form during polar night. Recent work proposed that, in a warmer climate, increasing low-cloud optical thickness of maritime air advected over high-latitude landmasses during polar night could suppress the formation of Arctic air masses, amplifying winter warming over continents and sea ice. But this mechanism was based on single-column simulations that could not assess the role of fractional cloud cover change. This paper presents two-dimensional cloud-resolving model simulations that support the single-column model results: low-cloud optical thickness and duration increase strongly with initial air temperature, slowing the surface cooling rate as the climate is warmed. The cloud-resolving model cools less at the surface than the single-column model, and the sensitivity of its cooling to warmer initial temperatures is also higher, because it produces cloudier atmospheres with stronger lower-tropospheric mixing and distributes cloud-top cooling over a deeper atmospheric layer with larger heat capacity. Resolving larger-scale cloud turbulence has the greatest impact on the microphysics schemes that best represent general observed features of mixed-phase clouds, increasing their sensitivity to climate warming. These findings support the hypothesis that increasing insulation of the high-latitude land surface by low clouds in a warmer world could act as a strong positive feedback in future climate change and suggest studying Arctic air formation in a three-dimensional climate model.

Full access
Zeyuan Hu, Timothy W. Cronin, and Eli Tziperman

Abstract

Recent studies, using Lagrangian single-column atmospheric models, have proposed that in warmer climates more low clouds would form as maritime air masses advect into Northern Hemisphere high-latitude continental interiors during winter (DJF). This increase in low cloud amount and optical thickness could reduce surface radiative cooling and suppress Arctic air formation events, partly explaining both the warm winter high-latitude continental interior climate and frost-intolerant species found there during the Eocene and the positive lapse-rate feedback in future Arctic climate change scenarios. Here the authors examine the robustness of this low-cloud mechanism in a three-dimensional atmospheric model that includes large-scale dynamics. Different warming scenarios are simulated under prescribed CO2 and sea surface temperature, and the sensitivity of winter temperatures and clouds over high-latitude continental interior to mid- and high-latitude sea surface temperatures is examined. Model results show that winter 2-m temperatures on extreme cold days increase about 50% faster than the winter mean temperatures and the prescribed SST. Low cloud fraction and surface longwave cloud radiative forcing also increase in both the winter mean state and on extreme cold days, consistent with previous Lagrangian air-mass studies, but with cloud fraction increasing for different reasons than proposed by previous work. At high latitudes, the cloud longwave warming effect dominates the shortwave cooling effect, and the net cloud radiative forcing at the surface tends to warm high-latitude land but cool midlatitude land. This could contribute to the reduced meridional temperature gradient in warmer climates and help explain the greater warming of winter cold extremes relative to winter mean temperatures.

Full access
Timothy W. Cronin and Daniel R. Chavas

Abstract

It is widely believed that tropical cyclones are an intrinsically moist phenomenon, requiring evaporation and latent heat release in cumulus convection. Recent numerical modeling by Mrowiec et al., however, challenged this conventional wisdom by finding the formation of axisymmetric dry tropical cyclones in dry radiative–convective equilibrium (RCE). This paper addresses ensuing questions about the stability of dry tropical cyclones in 3D, the moist–dry vortex transition, and whether existing theories for intensity, size, and structure apply to dry cyclones. A convection-permitting model is used to simulate rotating 3D RCE, with surface wetness (0–1) and surface temperature (240–300 K) smoothly varying between dry and moist states. Tropical cyclones spontaneously form and persist for tens of days in both moist and dry/cold states, as well as part of the relatively moist/warm intermediate parameter space. As the surface is dried or cooled, cyclones weaken, both in absolute terms and relative to their potential intensities. Dry and semidry cyclones have smaller outer radii but similar-sized or larger convective centers compared to moist cyclones, consistent with existing structural theory. Strikingly, spontaneous cyclogenesis fails to occur at moderately low surface wetness values and intermediate surface temperatures of 250–270 K. Simulations with time-varying surface moisture and sea surface temperatures indicate this range of parameter space is a barrier to spontaneous genesis but not cyclone existence. Dry and semidry tropical cyclones in rotating RCE provide a compelling model system to further our understanding of real moist tropical cyclones.

Full access
Nicholas J. Lutsko, Jane Wilson Baldwin, and Timothy W. Cronin

Abstract

The impact of large-scale orography on wintertime near-surface (850 hPa) temperature variability on daily and synoptic time scales (from days to weeks) in the Northern Hemisphere is investigated. Using a combination of theory, idealized modeling work, and simulations with a comprehensive climate model, it is shown that large-scale orography reduces upstream temperature gradients, in turn reducing upstream temperature variability, and enhances downstream temperature gradients, enhancing downstream temperature variability. Hence, the presence of the Rockies on the western edge of the North American continent increases temperature gradients over North America and, consequently, increases North American temperature variability. By contrast, the presence of the Tibetan Plateau and the Himalayas on the eastern edge of the Eurasian continent damps temperature variability over most of Eurasia. However, Tibet and the Himalayas also interfere with the downstream development of storms in the North Pacific storm track, and thus damp temperature variability over North America, by approximately as much as the Rockies enhance it. Large-scale orography is also shown to impact the skewness of downstream temperature distributions, as temperatures to the north of the enhanced temperature gradients are more positively skewed while temperatures to the south are more negatively skewed. This effect is most clearly seen in the northwest Pacific, off the east coast of Japan.

Open access
Tristan H. Abbott, Timothy W. Cronin, and Tom Beucler

Abstract

Tropical precipitation extremes are expected to strengthen with warming, but quantitative estimates remain uncertain because of a poor understanding of changes in convective dynamics. This uncertainty is addressed here by analyzing idealized convection-permitting simulations of radiative–convective equilibrium in long-channel geometry. Across a wide range of climates, the thermodynamic contribution to changes in instantaneous precipitation extremes follows near-surface moisture, and the dynamic contribution is positive and small but is sensitive to domain size. The shapes of mass flux profiles associated with precipitation extremes are determined by conditional sampling that favors strong vertical motion at levels where the vertical saturation specific humidity gradient is large, and mass flux profiles collapse to a common shape across climates when plotted in a moisture-based vertical coordinate. The collapse, robust to changes in microphysics and turbulence schemes, implies a thermodynamic contribution that scales with near-surface moisture despite substantial convergence aloft and allows the dynamic contribution to be defined by the pressure velocity at a single level. Linking the simplified dynamic mode to vertical velocities from entraining plume models reveals that the small dynamic mode in channel simulations (2% K−1) is caused by opposing height dependences of vertical velocity and density, together with the buffering influence of cloud-base buoyancies that vary little with surface temperature. These results reinforce an emerging picture of the response of extreme tropical precipitation rates to warming: a thermodynamic mode of about 7% K−1 dominates, with a minor contribution from changes in dynamics.

Restricted access
Catherine Wilka, Susan Solomon, Timothy W. Cronin, Doug Kinnison, and Rolando Garcia

Abstract

Matsuno–Gill circulations have been widely studied in tropical meteorology, but their impact on stratospheric chemistry has seldom been explicitly evaluated. This study demonstrates that, in a model nudged to reanalysis, anticyclonic Rossby wave gyres that form near the tropopause as a result of equatorially symmetric heating in the troposphere provide a dynamical mechanism to influence tropical and subtropical atmospheric chemistry during near-equinox months. The anticyclonic flow entrains extratropical air from higher latitudes into the deep tropics of both hemispheres and induces cooling in the already cold upper-troposphere/lower-stratosphere (UTLS) region. Both of these aspects of the circulation allow heterogeneous chlorine activation on sulfuric acid aerosols to proceed rapidly, primarily via the HCl + ClONO2 reaction. Precipitation rates and heating rates from reanalysis are shown to be consistent with these heating and circulation response patterns in the months of interest. This study analyzes specified dynamics simulations from the Whole Atmosphere Community Climate Model (SD-WACCM) with and without tropical heterogeneous chemistry to demonstrate that these circulations influence substantially the distributions of, for example, NO2 and ClO in the UTLS tropics and subtropics of both hemispheres. This provides a previously unrecognized dynamical influence on the spatial structures of atmospheric composition changes in the UTLS during near-equinox months.

Restricted access
Andrei P. Sokolov, David W. Kicklighter, Jerry M. Melillo, Benjamin S. Felzer, C. Adam Schlosser, and Timothy W. Cronin

Abstract

The impact of carbon–nitrogen dynamics in terrestrial ecosystems on the interaction between the carbon cycle and climate is studied using an earth system model of intermediate complexity, the MIT Integrated Global Systems Model (IGSM). Numerical simulations were carried out with two versions of the IGSM’s Terrestrial Ecosystems Model, one with and one without carbon–nitrogen dynamics.

Simulations show that consideration of carbon–nitrogen interactions not only limits the effect of CO2 fertilization but also changes the sign of the feedback between the climate and terrestrial carbon cycle. In the absence of carbon–nitrogen interactions, surface warming significantly reduces carbon sequestration in both vegetation and soil by increasing respiration and decomposition (a positive feedback). If plant carbon uptake, however, is assumed to be nitrogen limited, an increase in decomposition leads to an increase in nitrogen availability stimulating plant growth. The resulting increase in carbon uptake by vegetation exceeds carbon loss from the soil, leading to enhanced carbon sequestration (a negative feedback). Under very strong surface warming, however, terrestrial ecosystems become a carbon source whether or not carbon–nitrogen interactions are considered.

Overall, for small or moderate increases in surface temperatures, consideration of carbon–nitrogen interactions result in a larger increase in atmospheric CO2 concentration in the simulations with prescribed carbon emissions. This suggests that models that ignore terrestrial carbon–nitrogen dynamics will underestimate reductions in carbon emissions required to achieve atmospheric CO2 stabilization at a given level. At the same time, compensation between climate-related changes in the terrestrial and oceanic carbon uptakes significantly reduces uncertainty in projected CO2 concentration.

Full access