Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: Tongwen Wu x
  • Refine by Access: All Content x
Clear All Modify Search
Tong-Wen Wu and Zheng-An Qian

Abstract

Utilizing winter (November–March) accumulated snow depth data at 60 stations over the Tibetan Plateau (TP) for the period 1960–98, three typical patterns of the TP snow anomaly's spatial distribution were objectively classified by means of empirical orthogonal function (EOF) analysis. They are characterized by light snow over the entire Tibet region (LS pattern), by an eastern Tibet heavy snow (ETHS pattern), and by a southwestern Tibet heavy snow (SWTHS pattern), respectively.

The possible relations between various patterns of the Tibet winter snow anomaly and subsequent summer monsoon and rainfall over south, southeast, and east Asia are investigated using composite analysis. In ETHS and SWTHS years, the south and southeast Asian summer monsoon becomes weak and there is less summer rainfall over south and southeast Asia than in normal years. In LS years, the anomalies of the subsequent summer monsoon and rainfall are opposite to those in ETHS and SWTHS years. The physical mechanism is, in part, attributed to the impact of heavy snow on Tibet's atmospheric temperature, on the land–sea meridional thermal contrast, and also on the strength of the summer monsoon. The variation of summer rainfall over China associated with the preceding winter TP snow anomaly is also analyzed. There is a clear positive correlation between the Tibetan winter snow and the subsequent summer rainfall over the middle and lower reaches of the Yangtze River valley (central China). In contrast to the previous studies that use snow cover averaged over all of the Tibetan Plateau as a single number, the association between the winter snow and the subsequent summer precipitation over east China is much clearer.

Full access
Huaqiong Cheng, Tongwen Wu, and Wenjie Dong

Abstract

To analyze the middle-to-lower-troposphere atmospheric thermal contrast between the middle latitude over the Asian continent and over its eastern adjacent ocean near Japan, an empirical orthogonal function (EOF) analysis of the 40-yr ECMWF Re-Analysis (ERA-40) data of the June–August (JJA) 500-hPa geopotential height over the Asia–Pacific area (10°–80°N, 60°–180°E) during 1958–2000 was done. It shows that the dominating pattern of the thermal contrast may well be represented by a “seesaw” of 500-hPa geopotential height anomalies between a land area (40°–55°N, 75°–90°E) and an oceanic area (35°–42.5°N, 140°– 150°E). An index showing the difference between the two areas is defined as the middle-latitude land–sea thermal contrast index (LSI). The LSI has significant interannual and interdecadal variability. Its interannual variation is mainly attributed to the atmospheric thermal condition over the ocean, which has a remarkably regional unique feature, while the interdecadal variability is greatly attributed to that over the land.

The LSI has a close connection to the East Asian summer precipitation. The results show that large (small) LSI is related to high (low) summer precipitation in the middle to lower reaches of the Yangtze River, Korea, Japan, and its eastern adjacent ocean at the same latitude, and low (high) precipitation in the South China Sea and tropical western Pacific, as well as low (high) precipitation in north China and high-latitude northeast Asia. The pattern of correlation between LSI and precipitation resembles the spatial distribution of the principle EOF mode of year-to-year precipitation variations. Furthermore, the variation of LSI is highly correlated to the time series of the first EOF mode of summer precipitation anomalies. This suggests that the middle-latitude land–sea thermal contrast is one of important factors to influence on the summer precipitation variations over the area from the whole East Asia to the western Pacific. The possible physical mechanisms of the land–sea thermal contrast impacting the East Asian summer monsoon precipitation are also investigated.

Full access
Tongwen Wu, Rucong Yu, and Fang Zhang

Abstract

This paper describes a dynamic framework for an atmospheric general circulation spectral model in which a reference stratified atmospheric temperature and a reference surface pressure are introduced into the governing equations so as to improve the calculation of the pressure gradient force and gradients of surface pressure and temperature. The vertical profile of the reference atmospheric temperature approximately corresponds to that of the U.S. midlatitude standard atmosphere within the troposphere and stratosphere, and the reference surface pressure is a function of surface terrain geopotential and is close to the observed mean surface pressure. Prognostic variables for the temperature and surface pressure are replaced by their perturbations from the prescribed references. The numerical algorithms of the explicit time difference scheme for vorticity and the semi-implicit time difference scheme for divergence, perturbation temperature, and perturbation surface pressure equation are given in detail. The modified numerical framework is implemented in the Community Atmosphere Model version 3 (CAM3) developed at the National Center for Atmospheric Research (NCAR) to test its validation and impact on simulated climate. Both the original and the modified models are run with the same spectral resolution (T42), the same physical parameterizations, and the same boundary conditions corresponding to the observed monthly mean sea surface temperature and sea ice concentration from 1971 to 2000. This permits one to evaluate the performance of the new dynamic framework compared to the commonly used one. Results show that there is a general improvement for the simulated climate at regional and global scales, especially for temperature and wind.

Full access
Qiaoping Li, Song Yang, Tongwen Wu, and Xiangwen Liu

Abstract

Predictability of East Asian cold surges is studied using daily data from the hindcasts of 45-day integrations by the NCEP Climate Forecast System version 2 (CFSv2). Prediction skills of the CFSv2 in forecasting cold surges, their annual variation, and their physical links to large-scale atmospheric circulation patterns are examined. Results show that the climatological characteristics of the East Asian winter monsoon can be reasonably reproduced by the CFSv2. The model can well capture the frequency, intensity, and location of cold surges at a lead time of about two weeks. Obviously, fewer-than-observed cold surge days are found in the predictions when the lead time is above 14 days. The spatiotemporal evolutions of high-, mid-, and low-level circulation patterns during cold surge occurrences are all accurately indicated in the CFSv2 prediction. Except for precipitation, the other variables associated with cold surges, such as geopotential height, wind, sea level pressure, and surface air temperature, exhibit higher skills. The lead time of skillful prediction of precipitation is limited to around 1 week, with systematic wet biases over the South China Sea, the Philippine Islands, and the northwest Pacific, but dry biases over India, the Indo-China Peninsula, and most high-latitude regions. Wave train–like patterns of geopotential height and wind differ distinguishably when cold surges occur in northern and southern regions (using 35°N as the dividing line), and the CFSv2 gives a consistent prediction to these anomalous patterns. A weaker-than-observed Siberian high and weaker northerly winds over eastern China are found in the predictions especially at longer lead times.

Full access
Yang Gao, Tongwen Wu, Jun Wang, and Shihao Tang

Abstract

The Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation Measurement (GPM) mission core satellite provides the new-generation global observation of rain since 2014. The main objective of this paper is to evaluate the suitability and limitation of GPM-DPR level-2 products over China. The DPR rain rate products are compared with rain gauge data during the summers of 5 years (2014–18). The ground observation network is composed of more than 50 000 rain gauges. The DPR precipitation products for all scans (DPR_NS, DPR_MS, and DPR_HS) generally underestimate rain rates. However, DPR_MS agrees better with gauge estimates than DPR_NS and DPR_HS, yielding the lowest mean error, systematic deviation, and highest Pearson correlation coefficient. In addition, all three swath types show obvious overestimation over gauge estimates between 0.5 and 1 mm h−1 and underestimation when gauge estimates are larger than 1 mm h−1. The DPR_HS and DPR_MS agree better with gauge estimates below and above 2.5 mm h−1, respectively. A deeper investigation was carried out to analyze the variation of DPR_MS’s performance with respect to terrains over China. An obvious underestimation, relative to gauge estimates, occurs in Tibetan Plateau while a slight overestimation occurs in the North China Plain. Furthermore, our comprehensive analysis suggests that in Sichuan Basin, the DPR_MS exhibit the best agreement with gauge estimates.

Open access
Ben Yang, Yaocun Zhang, Yun Qian, Tongwen Wu, Anning Huang, and Yongjie Fang

Abstract

In this study, the authors apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM, version 2.1 (BCC_AGCM2.1). The results herein show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, including increased precipitation over the equatorial Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic mei-yu distribution over eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It is shown that simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño–decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs over ocean in observations) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific Ocean, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean–western Pacific teleconnection as observed. The model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.

Full access
Yixiong Lu, Tongwen Wu, Weihua Jie, Adam A. Scaife, Martin B. Andrews, and Jadwiga H. Richter

Abstract

It is well known that the stratospheric quasi-biennial oscillation (QBO) is forced by equatorial waves with different horizontal/vertical scales, including Kelvin waves, mixed Rossby–gravity (MRG) waves, inertial gravity waves (GWs), and mesoscale GWs, but the relative contribution of each wave is currently not very clear. Proper representation of these waves is critical to the simulation of the QBO in general circulation models (GCMs). In this study, the vertical resolution in the Beijing Climate Center Atmospheric General Circulation Model (BCC-AGCM) is increased to better represent large-scale waves, and a mesoscale GW parameterization scheme, which is coupled to the convective sources, is implemented to provide unresolved wave forcing of the QBO. Results show that BCC-AGCM can spontaneously generate the QBO with realistic periods, amplitudes, and asymmetric features between westerly and easterly phases. There are significant spatiotemporal variations of parameterized convective GWs, largely contributing to a great degree of variability in the simulated QBO. In the eastward wind shear of the QBO at 20 hPa, forcing provided by resolved waves is 0.1–0.2 m s−1 day−1 and forcing provided by parameterized GWs is ~0.15 m s−1 day−1. On the other hand, westward forcings by resolved waves and parameterized GWs are ~0.1 and 0.4–0.5 m s−1 day−1, respectively. It is inferred that the eastward forcing of the QBO is provided by both Kelvin waves and mesoscale convective GWs, whereas the westward forcing is largely provided by mesoscale GWs. MRG waves barely contribute to the formation of the QBO in the model.

Open access
Jian Rao, Chaim I. Garfinkel, Tongwen Wu, Yixiong Lu, and Min Chu

Abstract

Progress and persistent biases in the simulation of the stratospheric polar vortex from three generations of Coupled Model Intercomparison Projects (CMIPs) are assessed. On average, the stratospheric cold bias is largest in CMIP3, but is improved in CMIP5 and CMIP6. The climatological ridge in the stratosphere over the North Pacific is underestimated persistently across CMIPs. Four parameters of the stratospheric polar vortex are evaluated among models and among CMIPs, and some common biases are identified for most models, including the too-large size of the vortex periphery, overstrong strength, too-small aspect ratio of the vortex shape, and too-westward displaced a vortex centroid. Intermodel spread in some parameters is highly correlated with the sea surface temperature (SST) bias in northern tropical oceans. Namely, a cold SST bias in the northern tropical Pacific is associated with a too-strong and too-large polar vortex, and a cold SST bias in the northern tropical Atlantic seems to be related to the westward bias of the vortex centroid. The implications of biases in the mean state of the vortex for stratospheric events such as sudden stratospheric warmings (SSWs) are also identified in this study. Models with a climatological vortex that is too strong, has too low an aspect ratio, or has a westward-biased centroid usually produce fewer SSWs, whereas ones with weaker strength, high aspect ratio, and eastward-biased centroid produce more. Based on the multimodel mean, the biases of all parameters have improved across three generations of CMIPs, although persistent biases in some individual models exist across CMIPs. Intermodel relationships between the polar vortex and SST highlights the important role of the SST simulation for the stratosphere.

Restricted access
Junchen Yao, Frédéric Vitart, Magdalena Alonso Balmaseda, Tongwen Wu, and Xiangwen Liu

Abstract

This study investigates the impact of coupled initialization on the extended-range prediction of the Madden–Julian oscillation (MJO). A set of reforecasts using combinations of the oceanic and atmospheric initial conditions produced with coupled and uncoupled data assimilation (DA) are conducted to evaluate the impact of coupling in the different domains, from the perspective of MJO forecasts. The coupled initial conditions are provided by CERA-SAT pilot coupled reanalysis for the satellite era recently produced by ECMWF. We focus on the prediction skill of the MJO using the real-time outgoing longwave radiation (OLR) MJO index in a series of reforecasts. The impact of atmospheric initial conditions produced by coupled DA shows slight benefit for the MJO prediction. However, compared with the operational ocean reanalysis, the ocean initial conditions created by CERA-SAT degrade the MJO prediction skill during the first 2–3 weeks of the reforecast by 1.5%–5.8%. A moist static energy budget analysis revealed that the underestimation of 0.2 K sea surface temperature, 1.4 W m−2 top of the atmosphere downward longwave radiation, and 3.8 W m−2 latent heat flux over the Maritime Continent leads to a small but statistically significant degradation of the MJO forecast skill. The results demonstrate that the MJO is sensitive to ocean initial conditions, and illustrate the value of the extended-range MJO prediction for evaluating the quality of coupled data assimilation, and suggest that future efforts on coupled data assimilation pay special attention to the balance of air–sea interaction processes over the warm pool area, in terms of modeling, observational needs and system design.

Full access
Shizuo Liu, Qigang Wu, Steven R. Schroeder, Yonghong Yao, Yang Zhang, Tongwen Wu, Lei Wang, and Haibo Hu

Abstract

Previous studies show that there are substantial influences of winter–spring Tibetan Plateau (TP) snow anomalies on the Asian summer monsoon and that autumn–winter TP heavy snow can lead to persisting hemispheric Pacific–North America-like responses. This study further investigates global atmospheric responses to realistic extensive spring TP snow anomalies using observations and ensemble transient model integrations. Model ensemble simulations are forced by satellite-derived observed March–May TP snow cover extent and snow water equivalent in years with heavy or light TP snow. Heavy spring TP snow causes simultaneous significant local surface cooling and precipitation decreases over and near the TP snow anomaly. Distant responses include weaker surface cooling over most Asian areas surrounding the TP, a weaker drying band extending east and northeast into the North Pacific Ocean, and increased precipitation in a region surrounding this drying band. Also, there is tropospheric cooling from the TP into the North Pacific and over most of North America and the North Atlantic Ocean. The TP snow anomaly induces a negative North Pacific Oscillation/western Pacific–like teleconnection response throughout the troposphere and stratosphere. Atmospheric responses also include significantly increased Pacific trade winds, a strengthened intertropical convergence zone over the equatorial Pacific Ocean, and an enhanced local Hadley circulation. This result suggests a near-global impact of the TP snow anomaly in nearly all seasons.

Open access