Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Tsegaye Tadesse x
  • Refine by Access: All Content x
Clear All Modify Search
Saleh Satti, Benjamin F. Zaitchik, Hamada S. Badr, and Tsegaye Tadesse

Abstract

Improving seasonal forecasts in East Africa has great implications for food security and water resources planning in the region. Dynamically based seasonal forecast systems have much to contribute to this effort, as they have demonstrated ability to represent and, to some extent, predict large-scale atmospheric dynamics that drive interannual rainfall variability in East Africa. However, these global models often exhibit spatial biases in their placement of rainfall and rainfall anomalies within the region, which limits their direct applicability to forecast-based decision-making. This paper introduces a method that uses objective climate regionalization to improve the utility of dynamically based forecast-system predictions for East Africa. By breaking up the study area into regions that are homogenous in interannual precipitation variability, it is shown that models sometimes capture drivers of variability but misplace precipitation anomalies. These errors are evident in the pattern of homogenous regions in forecast systems relative to observation, indicating that forecasts can more meaningfully be applied at the scale of the analogous homogeneous climate region than as a direct forecast of the local grid cell. This regionalization approach was tested during the July–September (JAS) rain months, and results show an improvement in the predictions from version 4.5 of the Max Plank Institute for Meteorology’s atmosphere–ocean general circulation model (ECHAM4.5) for applicable areas of East Africa for the two test cases presented.

Full access
Tsegaye Tadesse, Deborah Bathke, Nicole Wall, Jacob Petr, and Tonya Haigh
Full access
Tsegaye Tadesse, Nicole Wall, Michael Hayes, Mark Svoboda, and Deborah Bathke
Open access
Tsegaye Tadesse, Donald A. Wilhite, Michael J. Hayes, Sherri K. Harms, and Steve Goddard

Abstract

Drought is a complex natural hazard that is best characterized by multiple climatological and hydrological parameters. Improving our understanding of the relationships between these parameters is necessary to reduce the impacts of drought. Data mining is a recently developed technique that can be used to interact with large databases and assist in the discovery of associations between drought and oceanic data by extracting information from massive and multiple data archives.

In this study, a new data-mining algorithm [i.e., Minimal Occurrences With Constraints and Time Lags (MOWCATL)] has been used to identify the relationships between oceanic parameters and drought indices. Rather than using traditional global statistical associations, the algorithm identifies drought episodes separate from normal and wet conditions and then uses drought episodes to find time-lagged relationships with oceanic parameters. As with all association-based data-mining algorithms, MOWCATL is used to find existing relationships in the data, and is not by itself a prediction tool.

Using the MOWCATL algorithm, the analyses of the rules generated for selected stations and state-averaged data for Nebraska from 1950 to 1999 indicate that most occurrences of drought are preceded by positive values of the Southern Oscillation index (SOI), negative values of the multivariate ENSO index (MEI), negative values of the Pacific–North American (PNA) index, negative values of the Pacific decadal oscillation (PDO), and negative values of the North Atlantic Oscillation (NAO). The frequency and confidence of the time-lagged relationships between oceanic indices and droughts at the selected stations in Nebraska indicate that oceanic parameters can be used as indicators of drought in Nebraska.

Full access
Tsegaye Tadesse, Tonya Haigh, Nicole Wall, Andualem Shiferaw, Ben Zaitchik, Shimelis Beyene, Getachew Berhan, and Jacob Petr
Full access
Faisal M. Qamer, Tsegaye Tadesse, Mir Matin, Walter L. Ellenburg, and Benjamin Zaitchik
Open access
Tsegaye Tadesse, Brian D. Wardlow, Jesslyn F. Brown, Mark D. Svoboda, Michael J. Hayes, Brian Fuchs, and Denise Gutzmer

Abstract

The vegetation drought response index (VegDRI), which combines traditional climate- and satellite-based approaches for assessing vegetation conditions, offers new insights into assessing the impacts of drought from local to regional scales. In 2011, the U.S. southern Great Plains, which includes Texas, Oklahoma, and New Mexico, was plagued by moderate to extreme drought that was intensified by an extended period of record-breaking heat. The 2011 drought presented an ideal case study to evaluate the performance of VegDRI in characterizing developing drought conditions. Assessment of the spatiotemporal drought patterns represented in the VegDRI maps showed that the severity and patterns of the drought across the region corresponded well to the record warm temperatures and much-below-normal precipitation reported by the National Climatic Data Center and the sectoral drought impacts documented by the Drought Impact Reporter (DIR). VegDRI values and maps also showed the evolution of the drought signal before the Las Conchas Fire (the largest fire in New Mexico’s history). Reports in the DIR indicated that the 2011 drought had major adverse impacts on most rangeland and pastures in Texas and Oklahoma, resulting in total direct losses of more than $12 billion associated with crop, livestock, and timber production. These severe impacts on vegetation were depicted by the VegDRI at subcounty, state, and regional levels. This study indicates that the VegDRI maps can be used with traditional drought indicators and other in situ measures to help producers and government officials with various management decisions, such as justifying disaster assistance, assessing fire risk, and identifying locations to move livestock for grazing.

Full access