Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: Tsubasa Kohyama x
- Refine by Access: All Content x
Abstract
In global warming experiments, the majority of global climate models warm faster in the eastern equatorial Pacific than in the west and produce a weakening of the Walker circulation. In contrast, GFDL-ESM2M is an exception that exhibits a La Niña–like mean-state warming with a strengthening of the Walker circulation. This study explores the cause of this exceptional response and proposes a new mechanism, the nonlinear ENSO warming suppression (NEWS), where the transient heating rate difference between the atmospheric and oceanic reservoirs annihilates extreme El Niños, causing a suppression of mean-state warming in the east. Heat budget analyses of GFDL-ESM2M robustly show that nonlinear dynamical heating, which is necessary for extremely warm El Niños, becomes negligible under warming. An idealized nonlinear recharge oscillator model suggests that, if the temperature difference between the atmospheric and oceanic reservoirs becomes larger than some threshold value, the upwelling becomes too efficient for El Niño–Southern Oscillation (ENSO) to retain its nonlinearity. Therefore, extreme El Niños dissipate but La Niñas remain almost unchanged, causing a La Niña–like mean-state warming. NEWS is consistent with observations and GFDL-ESM2M but not with the majority of state-of-the-art models, which lack realistic ENSO nonlinearity. NEWS and its opposite response to atmospheric cooling, the nonlinear ENSO cooling suppression (NECS), might contribute to the Pacific multidecadal natural variability and global warming hiatuses.
Abstract
In global warming experiments, the majority of global climate models warm faster in the eastern equatorial Pacific than in the west and produce a weakening of the Walker circulation. In contrast, GFDL-ESM2M is an exception that exhibits a La Niña–like mean-state warming with a strengthening of the Walker circulation. This study explores the cause of this exceptional response and proposes a new mechanism, the nonlinear ENSO warming suppression (NEWS), where the transient heating rate difference between the atmospheric and oceanic reservoirs annihilates extreme El Niños, causing a suppression of mean-state warming in the east. Heat budget analyses of GFDL-ESM2M robustly show that nonlinear dynamical heating, which is necessary for extremely warm El Niños, becomes negligible under warming. An idealized nonlinear recharge oscillator model suggests that, if the temperature difference between the atmospheric and oceanic reservoirs becomes larger than some threshold value, the upwelling becomes too efficient for El Niño–Southern Oscillation (ENSO) to retain its nonlinearity. Therefore, extreme El Niños dissipate but La Niñas remain almost unchanged, causing a La Niña–like mean-state warming. NEWS is consistent with observations and GFDL-ESM2M but not with the majority of state-of-the-art models, which lack realistic ENSO nonlinearity. NEWS and its opposite response to atmospheric cooling, the nonlinear ENSO cooling suppression (NECS), might contribute to the Pacific multidecadal natural variability and global warming hiatuses.
Abstract
The relationship between climate modes and Antarctic sea ice is explored by separating the variability into intraseasonal, interannual, and decadal time scales. Cross-spectral analysis shows that geopotential height and Antarctic sea ice extent are most coherent at periods between about 20 and 40 days (the intraseasonal time scale). In this period range, where the atmospheric circulation and the sea ice extent are most tightly coupled, sea ice variability responds strongly to Rossby waves with the structure of the Pacific–South American (PSA) pattern. The PSA pattern in this time scale is not directly related to El Niño–Southern Oscillation (ENSO) or the southern annular mode (SAM), which have received much attention for explaining Antarctic sea ice variability. On the interannual time scale, ENSO and SAM are important, but a large fraction of sea ice variance can also be explained by Rossby wave–like structures in the Drake Passage region. After regressing out the sea ice extent variability associated with ENSO, the observed positive sea ice trends in Ross Sea and Indian Ocean during the satellite era become statistically insignificant. Regressing out SAM makes the sea ice trend in the Indian Ocean insignificant. Thus, the positive trends in sea ice in the Ross Sea and the Indian Ocean sectors may be explained by the variability and decadal trends of known interannual climate modes.
Abstract
The relationship between climate modes and Antarctic sea ice is explored by separating the variability into intraseasonal, interannual, and decadal time scales. Cross-spectral analysis shows that geopotential height and Antarctic sea ice extent are most coherent at periods between about 20 and 40 days (the intraseasonal time scale). In this period range, where the atmospheric circulation and the sea ice extent are most tightly coupled, sea ice variability responds strongly to Rossby waves with the structure of the Pacific–South American (PSA) pattern. The PSA pattern in this time scale is not directly related to El Niño–Southern Oscillation (ENSO) or the southern annular mode (SAM), which have received much attention for explaining Antarctic sea ice variability. On the interannual time scale, ENSO and SAM are important, but a large fraction of sea ice variance can also be explained by Rossby wave–like structures in the Drake Passage region. After regressing out the sea ice extent variability associated with ENSO, the observed positive sea ice trends in Ross Sea and Indian Ocean during the satellite era become statistically insignificant. Regressing out SAM makes the sea ice trend in the Indian Ocean insignificant. Thus, the positive trends in sea ice in the Ross Sea and the Indian Ocean sectors may be explained by the variability and decadal trends of known interannual climate modes.
Abstract
The majority of the models that participated in phase 5 of the Coupled Model Intercomparison Project global warming experiments warm faster in the eastern equatorial Pacific Ocean than in the west. GFDL-ESM2M is an exception among the state-of-the-art global climate models in that the equatorial Pacific sea surface temperature (SST) in the west warms faster than in the east, and the Walker circulation strengthens in response to warming. This study shows that this “La Niña–like” trend simulated by GFDL-ESM2M could be a physically consistent response to warming, and that the forced response could have been detectable since the late twentieth century. Two additional models are examined: GFDL-ESM2G, which differs from GFDL-ESM2M only in the oceanic components, warms without a clear zonal SST gradient; and HadGEM2-CC exhibits a warming pattern that resembles the multimodel mean. A fundamental observed constraint between the amplitude of El Niño–Southern Oscillation (ENSO) and the mean-state zonal SST gradient is reproduced well by GFDL-ESM2M but not by the other two models, which display substantially weaker ENSO nonlinearity than is observed. Under this constraint, the weakening nonlinear ENSO amplitude in GFDL-ESM2M rectifies the mean state to be La Niña–like. GFDL-ESM2M exhibits more realistic equatorial thermal stratification than GFDL-ESM2G, which appears to be the most important difference for the ENSO nonlinearity. On longer time scales, the weaker polar amplification in GFDL-ESM2M may also explain the origin of the colder equatorial upwelling water, which could in turn weaken the ENSO amplitude.
Abstract
The majority of the models that participated in phase 5 of the Coupled Model Intercomparison Project global warming experiments warm faster in the eastern equatorial Pacific Ocean than in the west. GFDL-ESM2M is an exception among the state-of-the-art global climate models in that the equatorial Pacific sea surface temperature (SST) in the west warms faster than in the east, and the Walker circulation strengthens in response to warming. This study shows that this “La Niña–like” trend simulated by GFDL-ESM2M could be a physically consistent response to warming, and that the forced response could have been detectable since the late twentieth century. Two additional models are examined: GFDL-ESM2G, which differs from GFDL-ESM2M only in the oceanic components, warms without a clear zonal SST gradient; and HadGEM2-CC exhibits a warming pattern that resembles the multimodel mean. A fundamental observed constraint between the amplitude of El Niño–Southern Oscillation (ENSO) and the mean-state zonal SST gradient is reproduced well by GFDL-ESM2M but not by the other two models, which display substantially weaker ENSO nonlinearity than is observed. Under this constraint, the weakening nonlinear ENSO amplitude in GFDL-ESM2M rectifies the mean state to be La Niña–like. GFDL-ESM2M exhibits more realistic equatorial thermal stratification than GFDL-ESM2G, which appears to be the most important difference for the ENSO nonlinearity. On longer time scales, the weaker polar amplification in GFDL-ESM2M may also explain the origin of the colder equatorial upwelling water, which could in turn weaken the ENSO amplitude.
Abstract
During austral winter, a sharp contrast in low-cloud fraction and boundary layer structure across the Antarctic sea ice edge is seen in ship-based measurements and in active satellite retrievals from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), which provide an unprecedented view of polar clouds during winter. Sea ice inhibits heat and moisture transport from the ocean to the atmosphere, and, as a result, the boundary layer is cold, stable, and clear over sea ice and warm, moist, well mixed, and cloudy over open water. The mean low-cloud fraction observed by CALIPSO is roughly 0.7 over open water and 0.4–0.5 over sea ice, and the low-cloud layer is deeper over open water. Low-level winds in excess of 10 m s−1 are common over sea ice. Cold advection off of the sea ice pack causes enhanced low-cloud fraction over open water, and thus an enhanced longwave cloud radiative effect at the surface. Quantitative estimates of the surface longwave cloud radiative effect contributed by low clouds are presented. Finally, 10 state-of-the-art global climate models with satellite simulators are compared to observations. Near the sea ice edge, 7 out of 10 models simulate cloudier conditions over open water than over sea ice. Most models also underestimate low-cloud fraction both over sea ice and over open water.
Abstract
During austral winter, a sharp contrast in low-cloud fraction and boundary layer structure across the Antarctic sea ice edge is seen in ship-based measurements and in active satellite retrievals from Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), which provide an unprecedented view of polar clouds during winter. Sea ice inhibits heat and moisture transport from the ocean to the atmosphere, and, as a result, the boundary layer is cold, stable, and clear over sea ice and warm, moist, well mixed, and cloudy over open water. The mean low-cloud fraction observed by CALIPSO is roughly 0.7 over open water and 0.4–0.5 over sea ice, and the low-cloud layer is deeper over open water. Low-level winds in excess of 10 m s−1 are common over sea ice. Cold advection off of the sea ice pack causes enhanced low-cloud fraction over open water, and thus an enhanced longwave cloud radiative effect at the surface. Quantitative estimates of the surface longwave cloud radiative effect contributed by low clouds are presented. Finally, 10 state-of-the-art global climate models with satellite simulators are compared to observations. Near the sea ice edge, 7 out of 10 models simulate cloudier conditions over open water than over sea ice. Most models also underestimate low-cloud fraction both over sea ice and over open water.