Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: U. Send x
  • Refine by Access: All Content x
Clear All Modify Search
E. K. Skarsoulis
and
U. Send

Abstract

A new approach based on statistical estimation is proposed for the analysis of tomographic traveltime data in cases of significant nonlinear dependence of the traveltimes on the sound-speed variations. Traditional tomography schemes based on linear perturbative inversions about a single, a priori fixed background state cannot properly handle such cases since the linearized model relations will lead to considerable inversion errors, depending on the extent of nonlinearity. In contrast, the background state is considered here as a variable unknown quantity to be estimated from the traveltime data, simultaneously with the peak identification function and the sound-speed perturbation. Using the maximum likelihood approach and the Gaussian assumption, the statistical estimation problem reduces to a weighted least squares problem to be solved simultaneously for the three unknown quantities. A posteriori inversion-error estimates are derived accounting also for uncertainties in the background selection and the peak identification. The proposed method is applied to nine-month-long traveltime data from the Thetis-2 experiment, conducted from January to October 1994 in the Western Mediterranean Sea, where the variability of the ocean environment gives rise to significant nonlinear dependencies between sound-speed and traveltime variations. The recovered temporal variability and stratification compare well with independent XBT observations.

Full access
A. Anutaliya
,
U. Send
,
J. L. McClean
,
J. Sprintall
,
M. Lankhorst
,
C. M. Lee
,
L. Rainville
,
W. N. C. Priyadarshani
, and
S. U. P. Jinadasa

Abstract

Boundary currents along the Sri Lankan eastern and southern coasts serve as a pathway for salt exchange between the Bay of Bengal and the Arabian Sea basins in the northern Indian Ocean, which are characterized by their contrasting salinities. Measurements from two pairs of pressure-sensing inverted echo sounders (PIES) deployed along the Sri Lankan eastern and southern coasts as well as satellite measurements are used to understand the variability of these boundary currents and the associated salt transport. The volume transport in the surface (0–200-m depth) layer exhibits a seasonal cycle associated with the monsoonal wind reversal and interannual variability associated with the Indian Ocean dipole (IOD). In this layer, the boundary currents transport low-salinity water out of the Bay of Bengal during the northeast monsoon and transport high-salinity water into the Bay of Bengal during the fall monsoon transition of some years (e.g., 2015 and 2018). The Bay of Bengal salt input increases during the 2016 negative IOD as the eastward flow of high-salinity water during the fall monsoon transition intensifies, whereas the effect of the 2015/16 El Niño on the Bay of Bengal salt input is still unclear. The time-mean eddy salt flux over the upper 200 m estimated for the April 2015–March 2019 period along the eastern coast accounts for 9% of the salt budget required to balance an estimated 0.13 Sv (1 Sv ≡ 106 m3 s−1) of annual freshwater input into the Bay of Bengal. The time-mean eddy salt flux over the upper 200 m estimated for the December 2015–November 2019 period along the southern coast accounts for 27% of that same salt budget.

Significance Statement

In the northern Indian Ocean, the highly saline Arabian Sea undergoes extreme evaporation while the Bay of Bengal (BoB) receives excess freshwater input. The focus of this study is the role of the observed time-variable circulation around Sri Lanka that permits the exchange between these basins to maintain their salinity distributions. The circulation fluctuates seasonally following the monsoon wind reversal and interannually in response to large-scale climate modes. The BoB freshwater export around Sri Lanka occurs during the northeast monsoon, whereas saline water import occurs during the fall monsoon transition of some years. However, rapid changes in both water volume transport and salt exchange can occur. The circulation over 0–200-m depth transports ∼9%–27% of the BoB salt budget.

Restricted access
Hemantha W. Wijesekera
,
Emily Shroyer
,
Amit Tandon
,
M. Ravichandran
,
Debasis Sengupta
,
S. U. P. Jinadasa
,
Harindra J. S. Fernando
,
Neeraj Agrawal
,
K. Arulananthan
,
G. S. Bhat
,
Mark Baumgartner
,
Jared Buckley
,
Luca Centurioni
,
Patrick Conry
,
J. Thomas Farrar
,
Arnold L. Gordon
,
Verena Hormann
,
Ewa Jarosz
,
Tommy G. Jensen
,
Shaun Johnston
,
Matthias Lankhorst
,
Craig M. Lee
,
Laura S. Leo
,
Iossif Lozovatsky
,
Andrew J. Lucas
,
Jennifer Mackinnon
,
Amala Mahadevan
,
Jonathan Nash
,
Melissa M. Omand
,
Hieu Pham
,
Robert Pinkel
,
Luc Rainville
,
Sanjiv Ramachandran
,
Daniel L. Rudnick
,
Sutanu Sarkar
,
Uwe Send
,
Rashmi Sharma
,
Harper Simmons
,
Kathleen M. Stafford
,
Louis St. Laurent
,
Karan Venayagamoorthy
,
Ramasamy Venkatesan
,
William J. Teague
,
David W. Wang
,
Amy F. Waterhouse
,
Robert Weller
, and
Caitlin B. Whalen

Abstract

Air–Sea Interactions in the Northern Indian Ocean (ASIRI) is an international research effort (2013–17) aimed at understanding and quantifying coupled atmosphere–ocean dynamics of the Bay of Bengal (BoB) with relevance to Indian Ocean monsoons. Working collaboratively, more than 20 research institutions are acquiring field observations coupled with operational and high-resolution models to address scientific issues that have stymied the monsoon predictability. ASIRI combines new and mature observational technologies to resolve submesoscale to regional-scale currents and hydrophysical fields. These data reveal BoB’s sharp frontal features, submesoscale variability, low-salinity lenses and filaments, and shallow mixed layers, with relatively weak turbulent mixing. Observed physical features include energetic high-frequency internal waves in the southern BoB, energetic mesoscale and submesoscale features including an intrathermocline eddy in the central BoB, and a high-resolution view of the exchange along the periphery of Sri Lanka, which includes the 100-km-wide East India Coastal Current (EICC) carrying low-salinity water out of the BoB and an adjacent, broad northward flow (∼300 km wide) that carries high-salinity water into BoB during the northeast monsoon. Atmospheric boundary layer (ABL) observations during the decaying phase of the Madden–Julian oscillation (MJO) permit the study of multiscale atmospheric processes associated with non-MJO phenomena and their impacts on the marine boundary layer. Underway analyses that integrate observations and numerical simulations shed light on how air–sea interactions control the ABL and upper-ocean processes.

Full access
Emily Shroyer
,
Amit Tandon
,
Debasis Sengupta
,
Harindra J. S. Fernando
,
Andrew J. Lucas
,
J. Thomas Farrar
,
Rajib Chattopadhyay
,
Simon de Szoeke
,
Maria Flatau
,
Adam Rydbeck
,
Hemantha Wijesekera
,
Michael McPhaden
,
Hyodae Seo
,
Aneesh Subramanian
,
R Venkatesan
,
Jossia Joseph
,
S. Ramsundaram
,
Arnold L. Gordon
,
Shannon M. Bohman
,
Jaynise Pérez
,
Iury T. Simoes-Sousa
,
Steven R. Jayne
,
Robert E. Todd
,
G. S. Bhat
,
Matthias Lankhorst
,
Tamara Schlosser
,
Katherine Adams
,
S. U. P Jinadasa
,
Manikandan Mathur
,
M. Mohapatra
,
E. Pattabhi Rama Rao
,
A. K. Sahai
,
Rashmi Sharma
,
Craig Lee
,
Luc Rainville
,
Deepak Cherian
,
Kerstin Cullen
,
Luca R. Centurioni
,
Verena Hormann
,
Jennifer MacKinnon
,
Uwe Send
,
Arachaporn Anutaliya
,
Amy Waterhouse
,
Garrett S. Black
,
Jeremy A. Dehart
,
Kaitlyn M. Woods
,
Edward Creegan
,
Gad Levy
,
Lakshmi H. Kantha
, and
Bulusu Subrahmanyam

Abstract

In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST > 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.

Full access