Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Ulrika Willén x
  • Refine by Access: All Content x
Clear All Modify Search
Thomas Popp, Michaela I. Hegglin, Rainer Hollmann, Fabrice Ardhuin, Annett Bartsch, Ana Bastos, Victoria Bennett, Jacqueline Boutin, Carsten Brockmann, Michael Buchwitz, Emilio Chuvieco, Philippe Ciais, Wouter Dorigo, Darren Ghent, Richard Jones, Thomas Lavergne, Christopher J. Merchant, Benoit Meyssignac, Frank Paul, Shaun Quegan, Shubha Sathyendranath, Tracy Scanlon, Marc Schröder, Stefan G. H. Simis, and Ulrika Willén

Abstract

Climate data records (CDRs) of essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS) derived from satellite instruments help to characterize the main components of the Earth system, to identify the state and evolution of its processes, and to constrain the budgets of key cycles of water, carbon, and energy. The Climate Change Initiative (CCI) of the European Space Agency (ESA) coordinates the derivation of CDRs for 21 GCOS ECVs. The combined use of multiple ECVs for Earth system science applications requires consistency between and across their respective CDRs. As a comprehensive definition for multi-ECV consistency is missing so far, this study proposes defining consistency on three levels: 1) consistency in format and metadata to facilitate their synergetic use (technical level); 2) consistency in assumptions and auxiliary datasets to minimize incompatibilities among datasets (retrieval level); and 3) consistency between combined or multiple CDRs within their estimated uncertainties or physical constraints (scientific level). Analyzing consistency between CDRs of multiple quantities is a challenging task and requires coordination between different observational communities, which is facilitated by the CCI program. The interdependencies of the satellite-based CDRs derived within the CCI program are analyzed to identify where consistency considerations are most important. The study also summarizes measures taken in CCI to ensure consistency on the technical level, and develops a concept for assessing consistency on the retrieval and scientific levels in the light of underlying physical knowledge. Finally, this study presents the current status of consistency between the CCI CDRs and future efforts needed to further improve it.

Full access

EC-Earth

A Seamless Earth-System Prediction Approach in Action

Wilco Hazeleger, Camiel Severijns, Tido Semmler, Simona Ştefănescu, Shuting Yang, Xueli Wang, Klaus Wyser, Emanuel Dutra, José M. Baldasano, Richard Bintanja, Philippe Bougeault, Rodrigo Caballero, Annica M. L. Ekman, Jens H. Christensen, Bart van den Hurk, Pedro Jimenez, Colin Jones, Per Kållberg, Torben Koenigk, Ray McGrath, Pedro Miranda, Twan van Noije, Tim Palmer, José A. Parodi, Torben Schmith, Frank Selten, Trude Storelvmo, Andreas Sterl, Honoré Tapamo, Martin Vancoppenolle, Pedro Viterbo, and Ulrika Willén
Full access