Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Veronica Tamsitt x
  • Refine by Access: All Content x
Clear All Modify Search
Veronica Tamsitt, Lynne D. Talley, Matthew R. Mazloff, and Ivana Cerovečki


The spatial structure of the upper ocean heat budget in the Antarctic Circumpolar Current (ACC) is investigated using the ⅙°, data-assimilating Southern Ocean State Estimate (SOSE) for 2005–10. The ACC circumpolar integrated budget shows that 0.27 PW of ocean heat gain from the atmosphere and 0.38 PW heat gain from divergence of geostrophic heat transport are balanced by −0.58 PW cooling by divergence of Ekman heat transport and −0.09 PW divergence of vertical heat transport. However, this circumpolar integrated balance obscures important zonal variations in the heat budget. The air–sea heat flux shows a zonally asymmetric pattern of ocean heat gain in the Indian and Atlantic sectors and ocean heat loss in the Pacific sector of the ACC. In the Atlantic and Indian sectors of the ACC, the surface ocean heat gain is primarily balanced by divergence of equatorward Ekman heat transport that cools the upper ocean. In the Pacific sector, surface ocean heat loss and cooling due to divergence of Ekman heat transport are balanced by warming due to divergence of geostrophic heat advection, which is similar to the dominant heat balance in the subtropical Agulhas Return Current. The divergence of horizontal and vertical eddy advection of heat is important for warming the upper ocean close to major topographic features, while the divergence of mean vertical heat advection is a weak cooling term. The results herein show that topographic steering and zonal asymmetry in air–sea exchange lead to substantial zonal asymmetries in the heat budget, which is important for understanding the upper cell of the overturning circulation.

Full access
Yanzhou Wei, Sarah T. Gille, Matthew R. Mazloff, Veronica Tamsitt, Sebastiaan Swart, Dake Chen, and Louise Newman


Proposals from multiple nations to deploy air–sea flux moorings in the Southern Ocean have raised the question of how to optimize the placement of these moorings in order to maximize their utility, both as contributors to the network of observations assimilated in numerical weather prediction and also as a means to study a broad range of processes driving air–sea fluxes. This study, developed as a contribution to the Southern Ocean Observing System (SOOS), proposes criteria that can be used to determine mooring siting to obtain best estimates of net air–sea heat flux (Q net). Flux moorings are envisioned as one component of a multiplatform observing system, providing valuable in situ point time series measurements to be used alongside satellite data and observations from autonomous platforms and ships. Assimilating models (e.g., numerical weather prediction and reanalysis products) then offer the ability to synthesize the observing system and map properties between observations. This paper develops a framework for designing mooring array configurations to maximize the independence and utility of observations. As a test case, within the meridional band from 35° to 65°S we select eight mooring sites optimized to explain the largest fraction of the total variance (and thus to ensure the least variance of residual components) in the area south of 20°S. Results yield different optimal mooring sites for low-frequency interannual heat fluxes compared with higher-frequency subseasonal fluxes. With eight moorings, we could explain a maximum of 24.6% of high-frequency Q net variability or 44.7% of low-frequency Q net variability.

Open access
Veronica Tamsitt, Ivana Cerovečki, Simon A. Josey, Sarah T. Gille, and Eric Schulz


Wintertime surface ocean heat loss is the key process driving the formation of Subantarctic Mode Water (SAMW), but there are few direct observations of heat fluxes, particularly during winter. The Ocean Observatories Initiative (OOI) Southern Ocean mooring in the southeast Pacific Ocean and the Southern Ocean Flux Station (SOFS) in the southeast Indian Ocean provide the first concurrent, multiyear time series of air–sea fluxes in the Southern Ocean from two key SAMW formation regions. In this work we compare drivers of wintertime heat loss and SAMW formation by comparing air–sea fluxes and mixed layers at these two mooring locations. A gridded Argo product and the ERA5 reanalysis product provide temporal and spatial context for the mooring observations. Turbulent ocean heat loss is on average 1.5 times larger in the southeast Indian (SOFS) than in the southeast Pacific (OOI), with stronger extreme heat flux events in the southeast Indian leading to larger cumulative winter ocean heat loss. Turbulent heat loss events in the southeast Indian (SOFS) occur in two atmospheric regimes (cold air from the south or dry air circulating via the north), while heat loss events in the southeast Pacific (OOI) occur in a single atmospheric regime (cold air from the south). On interannual time scales, wintertime anomalies in net heat flux and mixed layer depth (MLD) are often correlated at the two sites, particularly when wintertime MLDs are anomalously deep. This relationship is part of a larger basin-scale zonal dipole in heat flux and MLD anomalies present in both the Indian and Pacific basins, associated with anomalous meridional atmospheric circulation.

Free access
Sjoerd Groeskamp, Casimir de Lavergne, Ryan Holmes, Veronica Tamsitt, Ivy Frenger, Christopher C. Chapman, Emily Newsom, and Geoffrey J. Stanley


What: An international cohort of oceanographers, marine biogeochemists, and climate modelers gathered to expand the use of water-mass transformation diagnostics in studies of ocean physics, biogeochemistry, and climate. Led by early-career scientists, the group laid out avenues to leverage growing oceanic observational databases and new model capabilities, using fundamental understanding of the ocean’s layering.

When: 4–6 February 2019

Where: Sydney, New South Wales, Australia

The opacity of seawater prevents radiation from penetrating into the ocean interior. Surface waters accumulate solar radiation, augmenting their buoyancy relative

Open access
Ivana Cerovečki, Andrew J. S. Meijers, Matthew R. Mazloff, Sarah T. Gille, Veronica M. Tamsitt, and Paul R. Holland


The top 2000 m of the Southern Ocean has freshened and warmed over recent decades. However, the high-latitude (south of 50°S) southeast Pacific was observed to be cooler and fresher in the years 2008–10 compared to 2005–07 over a wide depth range including surface, mode, and intermediate waters. The causes and impacts of this event are analyzed using the ocean–sea ice data-assimilating Southern Ocean State Estimate (SOSE) and observationally based products. In 2008–10, a strong positive southern annular mode coincided with a negative El Niño–Southern Oscillation and a deep Amundsen Sea low. Enhanced meridional winds drove strong sea ice export from the eastern Ross Sea, bringing large amounts of ice to the Amundsen Sea ice edge. In 2008, together with increased precipitation, this introduced a strong freshwater anomaly that was advected eastward by the Antarctic Circumpolar Current (ACC), mixing along the way. This anomaly entered the ocean interior not only as Antarctic Intermediate Water, but also as lighter Southeast Pacific Subantarctic Mode Water (SEPSAMW). A numerical particle release experiment carried out in SOSE showed that the Ross Sea sector was the dominant source of particles reaching the SEPSAMW formation region. This suggests that large-scale climate fluctuations can induce strong interannual variability of volume and properties of SEPSAMW. These fluctuations act at different time scales: instantaneously via direct forcing and also lagged over advective time scales of several years from upstream regions.

Full access
Sharon Stammerjohn, Ted A. Scambos, Susheel Adusumilli, Sandra Barreira, Germar H. Bernhard, Deniz Bozkurt, Seth M. Bushinsky, Kyle R. Clem, Steve Colwell, Lawrence Coy, Jos De Laat, Marcel D. du Plessis, Ryan L. Fogt, Annie Foppert, Helen Amanda Fricker, Alex S. Gardner, Sarah T. Gille, Tessa Gorte, Bryan Johnson, Eric Keenan, Daemon Kennett, Linda M. Keller, Natalya A. Kramarova, Kaisa Lakkala, Matthew A. Lazzara, Jan T. M. Lenaerts, Jan L. Lieser, Zhi Li, Hongxing Liu, Craig S. Long, Michael MacFerrin, Michelle L. Maclennan, Robert A. Massom, David Mikolajczyk, Lynn Montgomery, Thomas L. Mote, Eric R. Nash, Paul A. Newman, Irina Petropavlovskikh, Michael Pitts, Phillip Reid, Steven R. Rintoul, Michelle L. Santee, Elizabeth H. Shadwick, Alessandro Silvano, Scott Stierle, Susan Strahan, Adrienne J. Sutton, Sebastiaan Swart, Veronica Tamsitt, Bronte Tilbrook, Lei Wang, Nancy L. Williams, and Xiaojun Yuan
Full access