Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Vincenzo Vellucci x
  • All content x
Clear All Modify Search
Agnieszka Białek, Vincenzo Vellucci, Bernard Gentil, David Antoine, Javier Gorroño, Nigel Fox, and Craig Underwood


A new framework that enables evaluation of the in situ ocean color radiometry measurement uncertainty is presented. The study was conducted on the multispectral data from a permanent mooring deployed in clear open ocean water. The uncertainty is evaluated for each component of the measurement equation and data processing step that leads to deriving the remote sensing reflectance. The Monte Carlo method was selected to handle the data complexity such as correlation and nonlinearity in an efficient manner. The results are presented for a prescreened dataset that is suitable for system vicarious calibration applications. The framework provides uncertainty value per measurement taking into consideration environmental conditions present during acquisition. A summary value is calculated from the statistics of the individual uncertainties per each spectral channel. This summary value is below 4% (k = 1) for the blue and green spectral range. For the red spectral channels, the summary uncertainty value increases to approximately 5%. The presented method helps to understand the significance of various uncertainty components and to provide a way of identifying major contributors. This can be used for efficient system performance improvement in the future.

Open access
Emanuele Organelli, Hervé Claustre, Annick Bricaud, Catherine Schmechtig, Antoine Poteau, Xiaogang Xing, Louis Prieur, Fabrizio D’Ortenzio, Giorgio Dall’Olmo, and Vincenzo Vellucci


An array of Bio-Argo floats equipped with radiometric sensors has been recently deployed in various open ocean areas representative of the diversity of trophic and bio-optical conditions prevailing in the so-called case 1 waters. Around solar noon and almost every day, each float acquires 0–250-m vertical profiles of photosynthetically available radiation and downward irradiance at three wavelengths (380, 412, and 490 nm). Up until now, more than 6500 profiles for each radiometric channel have been acquired. As these radiometric data are collected out of an operator’s control and regardless of meteorological conditions, specific and automatic data processing protocols have to be developed. This paper presents a data quality-control procedure aimed at verifying profile shapes and providing near-real-time data distribution. This procedure is specifically developed to 1) identify main issues of measurements (i.e., dark signal, atmospheric clouds, spikes, and wave-focusing occurrences) and 2) validate the final data with a hierarchy of tests to ensure a scientific utilization. The procedure, adapted to each of the four radiometric channels, is designed to flag each profile in a way compliant with the data management procedure used by the Argo program. Main perturbations in the light field are identified by the new protocols with good performances over the whole dataset. This highlights its potential applicability at the global scale. Finally, the comparison with modeled surface irradiances allows for assessing the accuracy of quality-controlled measured irradiance values and identifying any possible evolution over the float lifetime due to biofouling and instrumental drift.

Full access