Search Results

You are looking at 1 - 10 of 15 items for

  • Author or Editor: Virendra P. Ghate x
  • Refine by Access: All Content x
Clear All Modify Search
Virendra P. Ghate
and
Pavlos Kollias

Abstract

The Amazon plays an important role in the global energy and hydrological budgets. The precipitation during the dry season (June–September) plays a critical role in maintaining the extent of the rain forest. The deployment of the first Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF-1) in the context of the Green Ocean Amazon (GOAmazon) field campaign at Manacapuru, Brazil, provided comprehensive measurements of surface, cloud, precipitation, radiation, and thermodynamic properties for two complete dry seasons (2014 and 2015). The precipitation events occurring during the nighttime were associated with propagating storm systems (nonlocal effects), while the daytime precipitation events were primarily a result of local land–atmosphere interactions. During the two dry seasons, precipitation was recorded at the surface on 106 days (43%) from 158 rain events with 82 daytime precipitation events occurring on 64 days (60.37%). Detailed comparisons between the diurnal cycles of surface and profile properties between days with and without daytime precipitation suggested the increased moisture at low and midlevels to be responsible for lowering the lifting condensation level, reducing convective inhibition and entrainment, and thus triggering the transition from shallow to deep convection. Although the monthly accumulated rainfall decreased during the progression of the dry season, the contribution of daytime precipitation to it increased, suggesting the decrease to be mainly due to reduction in propagating squall lines. The control of daytime precipitation during the dry season on large-scale moisture advection above the boundary layer and the total rainfall on propagating squall lines suggests that coarse-resolution models should be able to accurately simulate the dry season precipitation over the Amazon basin.

Full access
Virendra P. Ghate
,
Maria P. Cadeddu
,
Xue Zheng
, and
Ewan O’Connor

Abstract

Marine stratocumulus clouds are intimately coupled to the turbulence in the boundary layer and drizzle is known to be ubiquitous within them. Six years of data collected at the Atmospheric Radiation Measurement’s (ARM) Eastern North Atlantic (ENA) site are utilized to characterize turbulence in the marine boundary layer and air motions below stratocumulus clouds. Profiles of variance of vertical velocity binned by wind direction (wdir) yielded that the boundary layer measurements are affected by the island when the wdir is between 90° and 310° (measured clockwise from the north from where air is coming). Data collected during the marine conditions (wdir < 90° or wdir > 310°) showed that the variance of vertical velocity was higher during the winter months than during the summer months because of higher cloudiness, wind speeds, and surface fluxes. During marine conditions the variance of vertical velocity and cloud fraction exhibited a distinct diurnal cycle with higher values during the nighttime than during the daytime. Detailed analysis of 32 cases of drizzling marine stratocumulus clouds showed that, for a similar amount of radiative cooling at the cloud top, within the subcloud layer 1) drizzle increasingly falls within downdrafts with increasing rain rates, 2) the strength of the downdrafts increases with increasing rain rates, and 3) the correlation between vertical air motion and rain rate is highest in the middle of the subcloud layer. The results presented herein have implications for climatological and model evaluation studies conducted at the ENA site, along with efforts to accurately represent drizzle–turbulence interactions in a range of atmospheric models.

Open access
Mark A. Miller
,
Virendra P. Ghate
, and
Robert K. Zahn

Abstract

Continuous measurements of the shortwave (SW), longwave (LW), and net cross-atmosphere radiation flux divergence over the West African Sahel were made during the year 2006 using the Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and the Geostationary Earth Radiation Budget (GERB) satellite. Accompanying AMF measurements enabled calculations of the LW, SW, and net top of the atmosphere (TOA) and surface cloud radiative forcing (CRF), which quantifies the radiative effects of cloud cover on the column boundaries. Calculations of the LW, SW, and net cloud radiative effect (CRE), which is the difference between the TOA and surface radiative flux divergences in all-sky and clear-sky conditions, quantify the radiative effects on the column itself. These measurements were compared to predictions in four global climate models (GCMs) used in the Intergovernmental Panel for Climate Change Fourth Assessment Report (IPCC AR4). All four GCMs produced wet and dry seasons, but reproducing the SW column radiative flux divergence was problematic in the GCMs and SW discrepancies translated into discrepancies in the net radiative flux divergence. Computing cloud-related quantities from the measurements produced yearly averages of the SW TOA CRF, surface CRF, and CRE of ~−19, −83, and 47 W m−2, respectively, and yearly averages of the LW TOA CRF, surface CRF, and CRE of ~39, 37, and 2 W m−2. These quantities were analyzed in two GCMs and compensating errors in the SW and LW clear-sky, cross-atmosphere radiative flux divergence were found to conspire to produce somewhat reasonable predictions of the net clear-sky divergence. Both GCMs underestimated the surface LW and SW CRF and predicted near-zero SW CRE when the measured values were substantially larger (~70 W m−2 maximum).

Full access
Virendra P. Ghate
,
Mark A. Miller
, and
Ping Zhu

Abstract

Marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scale was 50%–70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s−1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures.

Full access
Jothiram Vivekanandan
,
Virendra P. Ghate
,
Jorgen B. Jensen
,
Scott M. Ellis
, and
M. Christian Schwartz

Abstract

This paper describes a technique for estimating the liquid water content (LWC) and a characteristic particle diameter in stratocumulus clouds using radar and lidar observations. The uncertainty in LWC estimate from radar and lidar measurements is significantly reduced once the characteristic particle diameter is known. The technique is independent of the drop size distribution. It is applicable for a broad range of W-band reflectivity Z between −30 and 0 dBZ and all values of lidar backscatter β observations. No partitioning of cloud or drizzle is required on the basis of an arbitrary threshold of Z as in prior studies. A method for estimating droplet diameter and LWC was derived from the electromagnetic simulations of radar and lidar observations. In situ stratocumulus cloud and drizzle probe spectra were input to the electromagnetic simulation. The retrieved droplet diameter and LWC were validated using in situ measurements from the southeastern Pacific Ocean. The retrieval method was applied to radar and lidar measurements from the northeastern Pacific. Uncertainty in the retrieved droplet diameter and LWC that are due to the measurement errors in radar and lidar backscatter measurements are 7% and 14%, respectively. The retrieved LWC was validated using the concurrent G-band radiometer estimates of the liquid water path.

Open access
Virendra P. Ghate
,
Annmarie G. Carlton
,
Thomas Surleta
, and
Alyssa Marie Burns

Abstract

Surface air temperatures in the southeastern United States that did not change from the climatological mean from 1900 to 2000 have increased since the year 2000. Analyzed herein are factors modulating the surface air temperatures in the region for a 20-yr period (2000–19) using space- and surface-based observations, and output from a reanalysis model. The 20-yr period is segregated into two decades, 2000–09 and 2010–19, corresponding to different tropospheric chemical regimes. Changes in seasonal and decadal averages are examined. The later decade experienced higher average surface air temperatures with significant warming during summer and fall seasons. Decadal and seasonal averages of cloud properties, column water vapor, rain rates, and top-of-atmosphere outgoing longwave radiation did not exhibit statistically significant differences between the two decades. The region experienced strong warm and moist advection during the winter months and very weak advection during the summer months. The later decade exhibited higher low-level moisture advection during the winter months than the earlier decade with insignificant changes in the temperature advection between the two decades. The later decade had significantly lower aerosol dry and liquid water mass during all seasons, along with lower aerosol optical depth, higher single scattering albedo, and lower top-of-the-atmosphere outgoing shortwave radiation during cloud-free conditions in the summer season. Collectively, these results suggest that changes in the aerosol direct radiative forcing are responsible for warming during summer months that experience weak advection and highlight seasonal differences in the temperature controlling mechanisms in the region.

Open access
Virendra P. Ghate
,
Bruce A. Albrecht
,
Mark A. Miller
,
Alan Brewer
, and
Christopher W. Fairall

Abstract

Observations made during a 24-h period as part of the Variability of the American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx) are analyzed to study the radiation and turbulence associated with the stratocumulus-topped marine boundary layer (BL). The first 14 h exhibited a well-mixed (coupled) BL with an average cloud-top radiative flux divergence of ~130 W m−2; the BL was decoupled during the last 10 h with negligible radiative flux divergence. The averaged radiative cooling very close to the cloud top was −9.04 K h−1 in coupled conditions and −3.85 K h−1 in decoupled conditions. This is the first study that combined data from a vertically pointing Doppler cloud radar and a Doppler lidar to yield the vertical velocity structure of the entire BL. The averaged vertical velocity variance and updraft mass flux during coupled conditions were higher than those during decoupled conditions at all levels by a factor of 2 or more. The vertical velocity skewness was negative in the entire BL during coupled conditions, whereas it was weakly positive in the lower third of the BL and negative above during decoupled conditions. A formulation of velocity scale is proposed that includes the effect of cloud-top radiative cooling in addition to the surface buoyancy flux. When scaled by the velocity scale, the vertical velocity variance and coherent downdrafts had similar magnitude during the coupled and decoupled conditions. The coherent updrafts that exhibited a constant profile in the entire BL during both the coupled and decoupled conditions scaled well with the convective velocity scale to a value of ~0.5.

Full access
Virendra P. Ghate
,
Mark A. Miller
,
Bruce A. Albrecht
, and
Christopher W. Fairall

Abstract

Stratocumulus-topped boundary layers (STBLs) observed in three different regions are described in the context of their thermodynamic and radiative properties. The primary dataset consists of 131 soundings from the southeastern Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic, and 83 soundings from the U.S. Southern Great Plains (SGP). A new technique that makes an attempt to preserve the depths of the sublayers within an STBL is proposed for averaging the profiles of thermodynamic and radiative variables. A one-dimensional radiative transfer model known as the Rapid Radiative Transfer Model was used to compute the radiative fluxes within the STBL. The SEP STBLs were characterized by a stronger and deeper inversion, together with thicker clouds, lower free-tropospheric moisture, and higher radiative flux divergence across the cloud layer, as compared to the GRW STBLs. Compared to the STBLs over the marine locations, the STBLs over SGP had higher wind shear and a negligible (−0.41 g kg−1) jump in mixing ratio across the inversion. Despite the differences in many of the STBL thermodynamic parameters, the differences in liquid water path at the three locations were statistically insignificant. The soundings were further classified as well mixed or decoupled based on the difference between the surface and cloud-base virtual potential temperature. The decoupled STBLs were deeper than the well-mixed STBLs at all three locations. Statistically insignificant differences in surface latent heat flux (LHF) between well-mixed and decoupled STBLs suggest that parameters other than LHF are responsible for producing decoupling.

Full access
Virendra P. Ghate
,
Bruce A. Albrecht
,
Christopher W. Fairall
, and
Robert A. Weller

Abstract

A 5-yr climatology of the meteorology, including boundary layer cloudiness, for the southeast Pacific region is presented using observations from a buoy located at 20°S, 85°W. The sea surface temperature and surface air temperature exhibit a sinusoidal seasonal cycle that is negatively correlated with surface pressure. The relative humidity, wind speed, and wind direction show little seasonal variability. But the advection of cold and dry air from the southeast varies seasonally and is highly correlated with the latent heat flux variations. A simple model was used to estimate the monthly cloud fraction using the observed surface downwelling longwave radiative flux and surface meteorological parameters. The annual cycle of cloud fraction is highly correlated to that of S. A. Klein: lower-tropospheric stability parameter (0.87), latent heat flux (−0.59), and temperature and moisture advection (0.60). The derived cloud fraction compares poorly with the International Satellite Cloud Climatology Project (ISCCP)-derived low-cloud cover but compares well (0.86 correlation) with ISCCP low- plus middle-cloud cover. The monthly averaged diurnal variations in cloud fraction show marked seasonal variability in the amplitude and temporal structure. The mean annual cloud fraction is lower than the mean annual nighttime cloud fraction by about 9%. Annual and diurnal cycles of surface longwave and shortwave cloud radiative forcing were also estimated. The longwave cloud radiative forcing is about 45 W m−2 year-round, but, because of highly negative shortwave cloud radiative forcing, the net cloud radiative forcing is always negative with an annual mean of −50 W m−2.

Full access
Cheng Tao
,
Yunyan Zhang
,
Qi Tang
,
Hsi-Yen Ma
,
Virendra P. Ghate
,
Shuaiqi Tang
,
Shaocheng Xie
, and
Joseph A. Santanello

Abstract

Using the 9-yr warm-season observations at the Atmospheric Radiation Measurement Southern Great Plains site, we assess the land–atmosphere (LA) coupling in the North American Regional Reanalysis (NARR) and two climate models: hindcasts with the Community Atmosphere Model version 5.1 by Cloud-Associated Parameterizations Testbed (CAM5-CAPT) and nudged runs with the Energy Exascale Earth System Model Atmosphere Model version 1 Regionally Refined Model (EAMv1-RRM). We focus on three local convective regimes and diagnose model behaviors using the local coupling metrics. NARR agrees well with observations except a slightly warmer and drier surface with higher downwelling shortwave radiation and lower evaporative fraction. On clear-sky days, it shows warmer and drier early-morning conditions in both models with significant underestimates in surface evaporation by EAMv1-RRM. On the majority of the ARM-observed shallow cumulus days, there is no or little low-level clouds in either model. When captured in models, the simulated shallow cumulus shows much less cloud fraction and lower cloud bases than observed. On the days with late-afternoon deep convection, models tend to present a stable early-morning lower atmosphere more frequently than the observations, suggesting that the deep convection is triggered more often by elevated instabilities. Generally, CAM5-CAPT can reproduce the local LA coupling processes to some extent due to the constrained early-morning conditions and large-scale winds. EAMv1-RRM exhibits large precipitation deficits and warm and dry biases toward mid-to-late summers, which may be an amplification through a positive LA feedback among initial atmosphere and land states, convection triggering and large-scale circulations.

Full access