Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: W. C. Boncyk x
  • Refine by Access: All Content x
Clear All Modify Search
R. Meneghini, T. Kozu, H. Kumagai, and W. C. Boncyk

Abstract

A question arising from the recent interest in spaceborne weather radar is what methods can be used to estimate precipitation parameters from space. In this paper, dual-wavelength airborne radar data obtained from flights conducted during 1988 and 1989 are used to compare rain rates derived from backscattering and attenuation methods. We begin with a survey of path-averaged rain rates estimated from six methods over four flights. The fairly large number of high rain-rate cases encountered during these experiments allows for the first tests of the surface-reference method applied to the low-frequency (10-GHz) data. To help interpret the results the surface reference methods are studied by means of scatterplots of the surface cross sections at the two frequencies under rain and no-rain conditions. Approximate criteria are given on combining attenuation and backscattering methods to increase the effective dynamic range of the radar. The dual-wavelength capability of the radar is also used to examine the vertical structure of the precipitation: critical to the success of most methods is the ability to distinguish rain from mixed-phase precipitation. Another factor affecting the accuracy of the methods is the drop-size distribution. In the final section of the paper a procedure to estimate the profiled drop-size distribution is applied to the measured radar data.

Full access
J. R. Wang, W. C. Boncyk, L. R. Dod, and A. K. Sharma

Abstract

Radiometric measurements at 90 GHz and three sideband frequencies near the peak water vapor absorption line of 183.3 GHz were made with Advanced Microwave Moisture Sounder (AMMS) aboard the NASA DC-8 aircraft during the Global Aerosol Backscatter Experiment (GLOBE) mission over the Pacific Ocean in November 1989. Some of the measurements over the high-latitude regions (>50°N or 50°S) were analyzed for the retrieval of total precipitable water less than 0.5 g cm−2 both over land and ocean surfaces. The results show that total precipitable water from a relatively dry atmosphere could be estimated with high sensitivity from these radiometric measurements. The retrieved values over ocean surface show a decrease toward the polar region as expected. The retrieved total precipitable water over land correlates positively with the aircraft radar altitude. This positive correlation is expected because the aircraft radar altitude provides a measure of atmospheric water vapor burden above the surface. Retrieved high reflectivities over land surface at 90 GHz and 183 GHz are presumably related to snow cover on the ground. This suggests that radiometric measurements at these frequencies could be used to map snow at high-latitude regions.

Full access
G. M. Heymsfield, J. M. Shepherd, S. W. Bidwell, W. C. Boncyk, I. J. Caylor, S. Ameen, and W. S. Olson

Abstract

This paper presents an analysis of a unique radar and radiometer dataset from the National Aeronautics and Space Administration (NASA) ER-2 high-altitude aircraft overlying Florida thunderstorms on 5 October 1993 during the Convection and Moisture Experiment (CAMEX). The observations represent the first ER-2 Doppler radar (EDOP) measurements and perhaps the most comprehensive multispectral precipitation measurements collected from a single aircraft. The objectives of this paper are to 1) examine the relation of the vertical radar reflectivity structure to the radiometric responses over a wide range of remote sensing frequencies, 2) examine the limitations of rain estimation schemes over land and ocean backgrounds based on the observed vertical reflectivity structures and brightness temperatures, and 3) assess the usefulness of scattering-based microwave frequencies (86 GHz and above) to provide information on vertical structure in the ice region. Analysis focused on two types of convection: a small group of thunderstorms over the Florida Straits and sea-breeze-initiated convection along the Florida Atlantic coast.

Various radiometric datasets are synthesized including visible, infrared (IR), and microwave (10–220 GHz). The rain cores observed over an ocean background by EDOP, compared quite well with elevated brightness temperatures from the Advanced Microwave Precipitation Radiometer (AMPR) 10.7-GHz channel. However, at higher microwave frequencies, which are ice-scattering based, storm evolution and vertical wind shear were found to be important in interpretation of the radiometric observations. As found in previous studies, the ice-scattering region was displaced significantly downshear of the convective and surface rainfall regions due to upper-level wind advection. The ice region above the rain layer was more opaque in the IR, although the 150- and 220-GHz brightness temperatures Tb approached the IR measurements and both corresponded well with the radar-detected ice regions. It was found that ice layer reflectivities and thicknesses were approximately 15 dBZ and a few kilometers, respectively, for detectable ice scattering to be present at these higher microwave frequencies.

The EDOP-derived rainfall rates and the simultaneous microwave Tb's were compared with single-frequency forward radiative transfer calculations using a family of vertical cloud and precipitation water profiles derived from a three-dimensional cloud model. Over water backgrounds, the lower-frequency emission-based theoretical curves agreed in a rough sense with the observed radar rainfall rate–Tb data points, in view of the uncertainties in the measurements and the scatter of the cloud model profiles.

The characteristics of the ice regions of the thunderstorms were examined using brightness temperature differences ΔTb such as Tb(37 GHz)–Tb(220 GHz). The Δ Tb's (150–220, 89–220, and 37–86 GHz) suggested a possible classification of the clouds and precipitation according to convective cores, elevated ice layers, and rain without significant ice above the melting layer. Although some qualitative classification of the ice is possible, the quantitative connection with ice path was difficult to obtain from the present observations.

Full access