Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: W. D. Nichols x
  • Refine by Access: All Content x
Clear All Modify Search
J. B. Stewart, W. P. Kustas, K. S. Humes, W. D. Nichols, M. S. Moran, and H. A. R. de Bruin

Abstract

Measurements of sensible heat flux, radiometric surface temperature, air temperature, and wind speed made at eight semiarid rangeland sites were used to investigate the sensible heat flux-aerodynamic resistance relationship. The individual sites covered a wide range of vegetation (0.1–4 m tall) and cover (3%–95% bare soil) conditions. Mean values of kB −1, a quantity related to the resistance of heat versus momentum transfer at the surface, for the individual sites varied between 3.5 and 12.5. A preliminary test of the utility of an excess resistance based on the mean value of kB −1 showed that the difference between the mean estimated and measured sensible heat fluxes varied ±60 W m−2 for the eight semiarid sites. For the eight sites the values of kB −1 were plotted against the roughness Reynolds number. The plot showed considerable scatter with values ranging between and beyond the theoretical curves for bluff rough and permeable rough surfaces.

Full access
W. E. Eichinger, H. E. Holder, R. Knight, J. Nichols, D. I. Cooper, L. E. Hipps, W. P. Kustas, and J. H. Prueger

Abstract

The Soil Moisture–Atmosphere Coupling Experiment (SMACEX) was conducted in the Walnut Creek watershed near Ames, Iowa, over the period from 15 June to 11 July 2002. A main focus of SMACEX is the investigation of the interactions between the atmospheric boundary layer, surface moisture, and canopy. A vertically staring elastic lidar was used to provide a high-time-resolution continuous record of the boundary layer height at the edge between a soybean and cornfield. The height and thickness of the entrainment zone are used to estimate the surface sensible heat flux using the Batchvarova–Gryning boundary layer model. Flux estimates made over 6 days are compared to conventional eddy correlation measurements. The calculated values of the sensible heat flux were found to be well correlated (R 2 = 0.79, with a slope of 0.95) when compared to eddy correlation measurements in the area. The standard error of the flux estimates was 21.4 W m−2 (31% rms difference between this method and surface measurements), which is somewhat higher than a predicted uncertainty of 16%. The major sources of error were from the estimates of the vertical potential temperature gradient and an assumption that the entrainment parameter A was equal to the ratio of the entrainment flux and the surface heat flux.

Full access
W. P. Kustas, D.C. Goodrich, M.S. Moran, S. A. Amer, L. B. Bach, J. H. Blanford, A. Chehbouni, H. Claassen, W. E. Clements, P. C. Doraiswamy, P. Dubois, T. R. Clarke, C. S. T. Daughtry, D. I. Gellman, T. A. Grant, L. E. Hipps, A. R. Huete, K. S. Humes, T. J. Jackson, T. O. Keefer, W. D. Nichols, R. Parry, E. M. Perry, R. T. Pinker, P. J. Pinter Jr., J. Qi, A. C. Riggs, T. J. Schmugge, A. M. Shutko, D. I. Stannard, E. Swiatek, J. D. van Leeuwen, J. van Zyl, A. Vidal, J. Washburne, and M. A. Weltz

Arid and semiarid rangelands comprise a significant portion of the earth's land surface. Yet little is known about the effects of temporal and spatial changes in surface soil moisture on the hydrologic cycle, energy balance, and the feedbacks to the atmosphere via thermal forcing over such environments. Understanding this interrelationship is crucial for evaluating the role of the hydrologic cycle in surface–atmosphere interactions.

This study focuses on the utility of remote sensing to provide measurements of surface soil moisture, surface albedo, vegetation biomass, and temperature at different spatial and temporal scales. Remote-sensing measurements may provide the only practical means of estimating some of the more important factors controlling land surface processes over large areas. Consequently, the use of remotely sensed information in biophysical and geophysical models greatly enhances their ability to compute fluxes at catchment and regional scales on a routine basis. However, model calculations for different climates and ecosystems need verification. This requires that the remotely sensed data and model computations be evaluated with ground-truth data collected at the same areal scales.

The present study (MONSOON 90) attempts to address this issue for semiarid rangelands. The experimental plan included remotely sensed data in the visible, near-infrared, thermal, and microwave wavelengths from ground and aircraft platforms and, when available, from satellites. Collected concurrently were ground measurements of soil moisture and temperature, energy and water fluxes, and profile data in the atmospheric boundary layer in a hydrologically instrumented semiarid rangeland watershed. Field experiments were conducted in 1990 during the dry and wet or “monsoon season” for the southwestern United States. A detailed description of the field campaigns, including measurements and some preliminary results are given.

Full access