Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: W. E. Clements x
  • Refine by Access: All Content x
Clear All Modify Search
W. M. Porch, S. Barr, W. E. Clements, J. A. Archuleta, A. B. Fernandez, C. W. King, W. D. Neff, and R. P. Hosker

Smoke pot and oil fog smoke tracers have been used to plan meteorological instrument placement and quantitatively estimate air volume flow from a tributary during nocturnal drainage wind conditions. The estimated volume flow agrees well with estimates of the flow using tethered-balloon and remotely obtained wind velocity measurements. The smoke visualization shows a very complex flow structure caused by tributary flow interactions with the flow down the main valley. The magnitude of the outflow volume from the tributary was greater than expected. If the tributary studied is representative of the other tributaries in the valley, most of the volume flow in the main valley may enter through the tributaries.

Full access
J. H. Mather, T. P. Ackerman, W. E. Clements, F. J. Barnes, M. D. Ivey, L. D. Hatfield, and R. M. Reynolds

The interaction of clouds and radiation is a particularly difficult issue in the study of climate change. Clouds have a large impact on the earth's radiation budget but the range of spatial and temporal scales and the complexity of the physical processes associated with clouds made these interactions difficult to simulate. The Department of Energy's Atmospheric Radiation Measurement (ARM) program was established to improve the understanding of the interaction of radiation with the atmosphere with a particular emphasis on the effects of clouds. To continue its role of providing data for the study of these interactions, the ARM program deployed an Atmospheric Radiation and Cloud Station (ARCS) in the tropical western Pacific. This site began operation in October 1996. The tropical western Pacific is a very important climatic region. It is characterized by strong solar heating, high water vapor concentrations, and active convection. The ARCS is equipped with a comprehensive suite of instruments for measuring surface radiation fluxes and properties of the atmospheric state and is intended to operate for the next 10 years. The ARCS is an integrated unit that includes a data management system, a site monitor and control system, an external communications system, redundant electrical power systems, and containers that provide shelter for the equipment as well as work space for site operators, technicians, and visiting scientists. The dataset the ARCS produces will be invaluable in studying issues related to clouds and radiation in the Tropics. The site is located in Manus Province, Papua New Guinea, at 2.060°S, 147.425°E, 300 km north of the island of New Guinea. Two more ARCS are planned for deployment across the tropical Pacific.

Full access
X. Liang, S. Miao, J. Li, R. Bornstein, X. Zhang, Y. Gao, F. Chen, X. Cao, Z. Cheng, C. Clements, W. Dabberdt, A. Ding, D. Ding, J. J. Dou, J. X. Dou, Y. Dou, C. S. B. Grimmond, J. E. González-Cruz, J. He, M. Huang, X. Huang, S. Ju, Q. Li, D. Niyogi, J. Quan, J. Sun, J. Z. Sun, M. Yu, J. Zhang, Y. Zhang, X. Zhao, Z. Zheng, and M. Zhou


Urbanization modifies atmospheric energy and moisture balances, forming distinct features [e.g., urban heat islands (UHIs) and enhanced or decreased precipitation]. These produce significant challenges to science and society, including rapid and intense flooding, heat waves strengthened by UHIs, and air pollutant haze. The Study of Urban Impacts on Rainfall and Fog/Haze (SURF) has brought together international expertise on observations and modeling, meteorology and atmospheric chemistry, and research and operational forecasting. The SURF overall science objective is a better understanding of urban, terrain, convection, and aerosol interactions for improved forecast accuracy. Specific objectives include a) promoting cooperative international research to improve understanding of urban summer convective precipitation and winter particulate episodes via extensive field studies, b) improving high-resolution urban weather and air quality forecast models, and c) enhancing urban weather forecasts for societal applications (e.g., health, energy, hydrologic, climate change, air quality, planning, and emergency response management). Preliminary SURF observational and modeling results are shown (i.e., turbulent PBL structure, bifurcating thunderstorms, haze events, urban canopy model development, and model forecast evaluation).

Open access
W. P. Kustas, D.C. Goodrich, M.S. Moran, S. A. Amer, L. B. Bach, J. H. Blanford, A. Chehbouni, H. Claassen, W. E. Clements, P. C. Doraiswamy, P. Dubois, T. R. Clarke, C. S. T. Daughtry, D. I. Gellman, T. A. Grant, L. E. Hipps, A. R. Huete, K. S. Humes, T. J. Jackson, T. O. Keefer, W. D. Nichols, R. Parry, E. M. Perry, R. T. Pinker, P. J. Pinter Jr., J. Qi, A. C. Riggs, T. J. Schmugge, A. M. Shutko, D. I. Stannard, E. Swiatek, J. D. van Leeuwen, J. van Zyl, A. Vidal, J. Washburne, and M. A. Weltz

Arid and semiarid rangelands comprise a significant portion of the earth's land surface. Yet little is known about the effects of temporal and spatial changes in surface soil moisture on the hydrologic cycle, energy balance, and the feedbacks to the atmosphere via thermal forcing over such environments. Understanding this interrelationship is crucial for evaluating the role of the hydrologic cycle in surface–atmosphere interactions.

This study focuses on the utility of remote sensing to provide measurements of surface soil moisture, surface albedo, vegetation biomass, and temperature at different spatial and temporal scales. Remote-sensing measurements may provide the only practical means of estimating some of the more important factors controlling land surface processes over large areas. Consequently, the use of remotely sensed information in biophysical and geophysical models greatly enhances their ability to compute fluxes at catchment and regional scales on a routine basis. However, model calculations for different climates and ecosystems need verification. This requires that the remotely sensed data and model computations be evaluated with ground-truth data collected at the same areal scales.

The present study (MONSOON 90) attempts to address this issue for semiarid rangelands. The experimental plan included remotely sensed data in the visible, near-infrared, thermal, and microwave wavelengths from ground and aircraft platforms and, when available, from satellites. Collected concurrently were ground measurements of soil moisture and temperature, energy and water fluxes, and profile data in the atmospheric boundary layer in a hydrologically instrumented semiarid rangeland watershed. Field experiments were conducted in 1990 during the dry and wet or “monsoon season” for the southwestern United States. A detailed description of the field campaigns, including measurements and some preliminary results are given.

Full access