Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: W. E. Meador x
  • Refine by Access: All Content x
Clear All Modify Search
W. E. Meador
and
W. R. Weaver

Abstract

Existing two-stream approximations to radiative transfer theory for particulate media are shown to be represented by identical forms of coupled differential equations if the intensity is replaced by integrals of the intensity over hemispheres. One set of solutions thus suffices for all methods and provides convenient analytical comparisons. The equations also suggest modifications of the standard techniques so as to duplicate exact solutions for thin atmospheres and thus permit accurate determinations of the effects of typical aerosol layers. Numerical results for the plane albedos of plane-parallel atmospheres (single-scattering albedo = 0.8, 1.0; optical thickness = 0.25, 1, 4. 16; Henyey-Greenstein phase function with asymmetry factor 0.75) are given for conventional and modified Eddington approximations, conventional and modified two-point quadrature schemes, the hemispheric-constant method and the delta-function method, all for comparison with accurate discrete-ordinate solutions. A new two-stream approximation is introduced that reduces to the modified Eddington approximation in the limit of isotropic phase functions and to the exact solution in the limit of extreme anisotropic scattering. Comparisons of plane albedos and transmittances show the new method to be generally superior over a wide range of atmospheric conditions (including cloud and aerosol layers), especially in the case of nonconservative scattering.

Full access
Andrew L. Pazmany
,
John C. Galloway
,
James B. Mead
,
Ivan Popstefanija
,
Robert E. McIntosh
, and
Howard W. Bluestein

Abstract

The Polarization Diversity Pulse-Pair (PDPP) technique can extend simultaneously the maximum unambiguous range and the maximum unambiguous velocity of a Doppler weather radar. This technique has been applied using a high-resolution 95-GHz radar to study the reflectivity and velocity structure in severe thunderstorms. This paper documents the technique, presents an analysis of the first two moments of the estimated mean velocity, and provides a comparison of the results with experimental data, including PDPP images of high-vorticity regions in supercell storms.

Full access