Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: W. F. Feltz x
  • Refine by Access: All Content x
Clear All Modify Search
D. D. Turner
,
W. F. Feltz
, and
R. A. Ferrare

The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.

Full access
N. L. Uhlenbrock
,
K. M. Bedka
,
W. F. Feltz
, and
S. A. Ackerman

Abstract

A technique for nowcasting turbulent mountain waves over the Front Range of the state of Colorado is investigated using Moderate Resolution Imaging Spectroradiometer (MODIS) water vapor (6.7 μm) channel imagery. Pilot reports of turbulence were examined to determine the probability of turbulence occurring when wave features were observed in the satellite imagery. Analysis of MODIS water vapor imagery indicated that mountain wave signatures were present for approximately 25% of the days during 2004. Approximately 75% of the severely turbulent days, as indicated by pilot reports, had wave signatures in the water vapor imagery. The wave signatures on the severely turbulent days had different characteristics in the imagery than the signatures on days that were less turbulent. The reports of severe turbulence were associated with complex patterns, the appearance of interference, or crossing wave fronts that extended downwind from the mountain ridge for a significant distance. The days that were less turbulent, as reported by pilots, had wave signatures with a simpler pattern, such as linear features orthogonal to the wind flow oriented parallel to one another.

Full access
W. F. Feltz
,
K. M. Bedka
,
J. A. Otkin
,
T. Greenwald
, and
S. A. Ackerman

Abstract

Prior work has shown that pilot reports of severe turbulence over Colorado often occur when complex interference or crossing wave patterns are present in satellite water vapor imagery downstream of the Rocky Mountains. To improve the understanding of these patterns, a high-resolution (1-km) Weather Research and Forecasting (WRF) model simulation was performed for an intense mountain-wave event that occurred on 6 March 2004. Synthetic satellite imagery was subsequently generated by passing the model-simulated data through a forward radiative transfer model. Comparison with concurrent Moderate Resolution Imaging Spectroradiometer (MODIS) water vapor imagery demonstrates that the synthetic satellite data realistically captured many of the observed mesoscale features, including a mountain-wave train extending far downstream of the Colorado Front Range, the deformation of this wave train by an approaching cold front, and the substantially warmer brightness temperatures in the lee of the major mountain ranges composing the Colorado Rockies. Inspection of the model data revealed that the mountain waves redistributed the water vapor within the lower and middle troposphere, with the maximum column-integrated water vapor content occurring one-quarter wavelength downstream of the maximum ascent within each mountain wave. Due to this phase shift, the strongest vertical motions occur halfway between the locally warm and cool brightness temperature couplets in the water vapor imagery. Interference patterns seen in the water vapor imagery appear to be associated with mesoscale variability in the ambient wind field at or near mountaintop due to flow interaction with the complex topography. It is also demonstrated that the synergistic use of multiple water vapor channels provides a more thorough depiction of the vertical extent of the mountain waves since the weighting function for each channel peaks at a different height in the atmosphere.

Full access
A. Lenz
,
K. M. Bedka
,
W. F. Feltz
, and
S. A. Ackerman

Abstract

Transverse cirrus bands have commonly been observed in the outflow of thunderstorms, though little literature exists on the subject. The primary objective of this paper is to characterize the transverse band signature in satellite imagery with references to storm location, movement, and life cycle. The transverse band signature was observed in nearly half of all convective systems analyzed between May and August 2006, commonly in the mature and decay stages of the system. Storm size and propagation did not appear to influence transverse bands, though the bands did appear to be associated with negative 300-hPa relative vorticity and positive divergence. Transverse bands lasted an average duration of 9 h and generally occurred during the nighttime hours. The satellite analysis was combined with eddy dissipation rate (EDR) atmospheric turbulence observations collected by commercial aircraft. At least one observation of light (moderate) turbulence was found within transverse bands for 93% (44%) of events, indicating that the presence of transverse bands in satellite imagery is a strong indicator for aviation turbulence.

Full access
W. F. Feltz
,
W. L. Smith
,
H. B. Howell
,
R. O. Knuteson
,
H. Woolf
, and
H. E. Revercomb

Abstract

The Department of Energy Atmospheric Radiation Measurement Program (ARM) has funded the development and installation of five ground-based atmospheric emitted radiance interferometer (AERI) systems at the Southern Great Plains (SGP) site. The purpose of this paper is to provide an overview of the AERI instrument, improvement of the AERI temperature and moisture retrieval technique, new profiling utility, and validation of high-temporal-resolution AERI-derived stability indices important for convective nowcasting. AERI systems have been built at the University of Wisconsin—Madison, Madison, Wisconsin, and deployed in the Oklahoma–Kansas area collocated with National Oceanic and Atmospheric Administration 404-MHz wind profilers at Lamont, Vici, Purcell, and Morris, Oklahoma, and Hillsboro, Kansas. The AERI systems produce absolutely calibrated atmospheric infrared emitted radiances at one-wavenumber resolution from 3 to 20 μm at less than 10-min temporal resolution. The instruments are robust, are automated in the field, and are monitored via the Internet in near–real time. The infrared radiances measured by the AERI systems contain meteorological information about the vertical structure of temperature and water vapor in the planetary boundary layer (PBL; 0–3 km). A mature temperature and water vapor retrieval algorithm has been developed over a 10-yr period that provides vertical profiles at less than 10-min temporal resolution to 3 km in the PBL. A statistical retrieval is combined with the hourly Geostationary Operational Environmental Satellite (GOES) sounder water vapor or Rapid Update Cycle, version 2, numerical weather prediction (NWP) model profiles to provide a nominal hybrid first guess of temperature and moisture to the AERI physical retrieval algorithm. The hourly satellite or NWP data provide a best estimate of the atmospheric state in the upper PBL; the AERI radiances provide the mesoscale temperature and moisture profile correction in the PBL to the large-scale GOES and NWP model profiles at high temporal resolution. The retrieval product has been named AERIplus because the first guess used for the mathematical physical inversion uses an optimal combination of statistical climatological, satellite, and numerical model data to provide a best estimate of the atmospheric state. The AERI physical retrieval algorithm adjusts the boundary layer temperature and moisture structure provided by the hybrid first guess to fit the observed AERI downwelling radiance measurement. This provides a calculated AERI temperature and moisture profile using AERI-observed radiances “plus” the best-known atmospheric state above the boundary layer using NWP or satellite data. AERIplus retrieval accuracy for temperature has been determined to be better than 1 K, and water vapor retrieval accuracy is approximately 5% in absolute water vapor when compared with well-calibrated radiosondes from the surface to an altitude of 3 km. Because AERI can monitor the thermodynamics where the atmosphere usually changes most rapidly, atmospheric stability tendency information is readily available from the system. High-temporal-resolution retrieval of convective available potential energy, convective inhibition, and PBL equivalent potential temperature θ e are provided in near–real time from all five AERI systems at the ARM SGP site, offering a unique look at the atmospheric state. This new source of meteorological data has shown excellent skill in detecting rapid synoptic and mesoscale meteorological changes within clear atmospheric conditions. This method has utility in nowcasting temperature inversion strength and destabilization caused by θ e advection. This high-temporal-resolution monitoring of rapid atmospheric destabilization is especially important for nowcasting severe convection.

Full access
D. D. Turner
,
R. A. Ferrare
,
L. A. Heilman Brasseur
,
W. F. Feltz
, and
T. P. Tooman

Abstract

Automated routines have been developed to derive water vapor mixing ratio, relative humidity, aerosol extinction and backscatter coefficient, and linear depolarization profiles, as well as total precipitable water vapor and aerosol optical thickness, from the operational Raman lidar at the Atmospheric Radiation Measurement (ARM) program's site in north-central Oklahoma. These routines have been devised to maintain the calibration of these data products, which have proven sensitive to the automatic alignment adjustments that are made periodically by the instrument. Since this Raman lidar does not scan, aerosol extinction cannot be directly computed below approximately 800 m due to the incomplete overlap of the outgoing laser beam with the detector's field of view. Therefore, the extinction-to-backscatter ratio at 1 km is used with the aerosol backscatter coefficient profile to compute aerosol extinction from 60 m to the level of complete overlap. Comparisons of aerosol optical depth derived using these algorithms with a collocated CIMEL sun photometer for clear-sky days over an approximate 2-yr period show a slope of 0.90 with a correlation coefficient of 0.884. Furthermore, comparing the aerosol extinction profile retrieved from this system with that from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center's scanning Raman lidar agrees within 10% for the single available case.

Full access
Timothy J. Schmit
,
Wayne F. Feltz
,
W. Paul Menzel
,
James Jung
,
Andrew P. Noel
,
James N. Heil
,
James P. Nelson III
, and
Gary S. Wade

Abstract

The Geostationary Operational Environmental Satellite (GOES) sounders have provided quality hourly radiances and derived products over the continental United States and adjacent oceans for more than five years. The products derived from the radiances include temperature and moisture profiles; total precipitable water vapor (TPW); atmospheric stability indices, such as convective available potential energy (CAPE) and lifted index (LI); cloud-top properties; total column ozone; and midlevel motion. This paper focuses on validation and use of moisture profiles derived in clear regions. Validations are made with respect to collocated radiosondes, a microwave radiometer, and parallel runs of the regional Eta Model system. The ground-based microwave radiometer enables comparisons throughout the day, instead of only at conventional radiosonde launch times (0000 and 1200 UTC). The validations show that the sounder products provide unique information about the state of the atmosphere. The GOES sounder moisture data add information with considerably higher spatial and temporal resolution than is available from conventional radiosondes. Assimilation of three layers of moisture information retrieved from GOES sounder measurements has improved Eta Model precipitation forecasts even out to 48 h. Moreover, National Weather Service (NWS) forecasters are using GOES sounder products for a range of applications, with positive results.

Full access
R. O. Knuteson
,
H. E. Revercomb
,
F. A. Best
,
N. C. Ciganovich
,
R. G. Dedecker
,
T. P. Dirkx
,
S. C. Ellington
,
W. F. Feltz
,
R. K. Garcia
,
H. B. Howell
,
W. L. Smith
,
J. F. Short
, and
D. C. Tobin

Abstract

A ground-based Fourier transform spectrometer has been developed to measure the atmospheric downwelling infrared radiance spectrum at the earth's surface with high absolute accuracy. The Atmospheric Emitted Radiance Interferometer (AERI) instrument was designed and fabricated by the University of Wisconsin Space Science and Engineering Center (UW-SSEC) for the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program. This paper emphasizes the key features of the UW-SSEC instrument design that contribute to meeting the AERI instrument requirements for the ARM Program. These features include a highly accurate radiometric calibration system, an instrument controller that provides continuous and autonomous operation, an extensive data acquisition system for monitoring calibration temperatures and instrument health, and a real-time data processing system. In particular, focus is placed on design issues crucial to meeting the ARM requirements for radiometric calibration, spectral calibration, noise performance, and operational reliability. The detailed performance characteristics of the AERI instruments built for the ARM Program are described in a companion paper.

Full access
R. O. Knuteson
,
H. E. Revercomb
,
F. A. Best
,
N. C. Ciganovich
,
R. G. Dedecker
,
T. P. Dirkx
,
S. C. Ellington
,
W. F. Feltz
,
R. K. Garcia
,
H. B. Howell
,
W. L. Smith
,
J. F. Short
, and
D. C. Tobin

Abstract

The Atmospheric Emitted Radiance Interferometer (AERI) instrument was developed for the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program by the University of Wisconsin Space Science and Engineering Center (UW-SSEC). The infrared emission spectra measured by the instrument have the sensitivity and absolute accuracy needed for atmospheric remote sensing and climate studies. The instrument design is described in a companion paper. This paper describes in detail the measured performance characteristics of the AERI instruments built for the ARM Program. In particular, the AERI systems achieve an absolute radiometric calibration of better than 1% (3σ) of ambient radiance, with a reproducibility of better than 0.2%. The knowledge of the AERI spectral calibration is better than 1.5 ppm (1σ) in the wavenumber range 400– 3000 cm−1.

Full access

The Arm Program's Water Vapor Intensive Observation Periods

Overview, Initial Accomplishments, and Future Challenges

H. E. Revercomb
,
D. D. Turner
,
D. C. Tobin
,
R. O. Knuteson
,
W. F. Feltz
,
J. Barnard
,
J. Bösenberg
,
S. Clough
,
D. Cook
,
R. Ferrare
,
J. Goldsmith
,
S. Gutman
,
R. Halthore
,
B. Lesht
,
J. Liljegren
,
H. Linné
,
J. Michalsky
,
V. Morris
,
W. Porch
,
S. Richardson
,
B. Schmid
,
M. Splitt
,
T. Van Hove
,
E. Westwater
, and
D. Whiteman

A series of water vapor intensive observation periods (WVIOPs) were conducted at the Atmospheric Radiation Measurement (ARM) site in Oklahoma between 1996 and 2000. The goals of these WVIOPs are to characterize the accuracy of the operational water vapor observations and to develop techniques to improve the accuracy of these measurements.

The initial focus of these experiments was on the lower atmosphere, for which the goal is an absolute accuracy of better than 2% in total column water vapor, corresponding to ~1 W m−2 of infrared radiation at the surface. To complement the operational water vapor instruments during the WVIOPs, additional instrumentation including a scanning Raman lidar, microwave radiometers, chilled-mirror hygrometers, a differential absorption lidar, and ground-based solar radiometers were deployed at the ARM site. The unique datasets from the 1996, 1997, and 1999 experiments have led to many results, including the discovery and characterization of a large (> 25%) sonde-to-sonde variability in the water vapor profiles from Vaisala RS-80H radiosondes that acts like a height-independent calibration factor error. However, the microwave observations provide a stable reference that can be used to remove a large part of the sonde-to-sonde calibration variability. In situ capacitive water vapor sensors demonstrated agreement within 2% of chilled-mirror hygrometers at the surface and on an instrumented tower. Water vapor profiles retrieved from two Raman lidars, which have both been calibrated to the ARM microwave radiometer, showed agreement to within 5% for all altitudes below 8 km during two WVIOPs. The mean agreement of the total precipitable water vapor from different techniques has converged significantly from early analysis that originally showed differences up to 15%. Retrievals of total precipitable water vapor (PWV) from the ARM microwave radiometer are now found to be only 3% moister than PWV derived from new GPS results, and about 2% drier than the mean of radiosonde data after a recently defined sonde dry-bias correction is applied. Raman lidar profiles calibrated using tower-mounted chilled-mirror hygrometers confirm the expected sensitivity of microwave radiometer data to water vapor changes, but it is drier than the microwave radiometer (MWR) by 0.95 mm for all PWV amounts. However, observations from different collocated microwave radiometers have shown larger differences than expected and attempts to resolve the remaining inconsistencies (in both calibration and forward modeling) are continuing.

The paper concludes by outlining the objectives of the recent 2000 WVIOP and the ARM–First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) Water Vapor Experiment (AFWEX), the latter of which switched the focus to characterizing upper-tropospheric humidity measurements.

Full access