Search Results
You are looking at 1 - 10 of 67 items for
- Author or Editor: W. James Steenburgh x
- Refine by Access: All Content x
Abstract
Synoptic, orographic, and lake-effect precipitation processes during a major winter storm cycle over the Wasatch Mountains of northern Utah are examined using radar imagery, high-density surface data, and precipitation observations from Alta Ski Area [2600–3200 m above mean sea level (MSL)] and nearby Salt Lake City International Airport (1288 m MSL). The storm cycle, which occurred from 22 to 27 November 2001, included two distinct storm systems that produced 108 in. (274 cm) of snow at Alta Ski Area, including 100 in. (254 cm) during a 100-h period. Each storm system featured an intrusion of low equivalent potential temperature (θ e ) air aloft, well in advance of a surface-based cold front. Prefrontal precipitation became increasingly convective as low-θ e air aloft moved over northern Utah, while cold frontal passage was accompanied by a convective line and a stratiform precipitation region. Postfrontal destabilization led to orographic and lake-effect snowshowers that produced two-thirds of the observed snow water equivalent at Alta.
Storm stages were defined based on the passage of the above features and their accompanying changes in stability and precipitation processes. Contrasts between mountain and lowland precipitation varied dramatically from stage to stage and storm to storm, and frequently deviated from climatology, which features a nearly fourfold increase in precipitation between Salt Lake City and Alta. Based on the two storms, as well as other studies, a schematic diagram is presented that summarizes the evolution of Intermountain West snowstorms featuring an intrusion of low-θ e air aloft ahead of a surface cold front. Implications for short-range quantitative precipitation forecasting and seasonal-to-annual hydrometeorological prediction are discussed.
Abstract
Synoptic, orographic, and lake-effect precipitation processes during a major winter storm cycle over the Wasatch Mountains of northern Utah are examined using radar imagery, high-density surface data, and precipitation observations from Alta Ski Area [2600–3200 m above mean sea level (MSL)] and nearby Salt Lake City International Airport (1288 m MSL). The storm cycle, which occurred from 22 to 27 November 2001, included two distinct storm systems that produced 108 in. (274 cm) of snow at Alta Ski Area, including 100 in. (254 cm) during a 100-h period. Each storm system featured an intrusion of low equivalent potential temperature (θ e ) air aloft, well in advance of a surface-based cold front. Prefrontal precipitation became increasingly convective as low-θ e air aloft moved over northern Utah, while cold frontal passage was accompanied by a convective line and a stratiform precipitation region. Postfrontal destabilization led to orographic and lake-effect snowshowers that produced two-thirds of the observed snow water equivalent at Alta.
Storm stages were defined based on the passage of the above features and their accompanying changes in stability and precipitation processes. Contrasts between mountain and lowland precipitation varied dramatically from stage to stage and storm to storm, and frequently deviated from climatology, which features a nearly fourfold increase in precipitation between Salt Lake City and Alta. Based on the two storms, as well as other studies, a schematic diagram is presented that summarizes the evolution of Intermountain West snowstorms featuring an intrusion of low-θ e air aloft ahead of a surface cold front. Implications for short-range quantitative precipitation forecasting and seasonal-to-annual hydrometeorological prediction are discussed.
Abstract
A remarkable snow climate exists on the Japanese islands of Honshu and Hokkaido near the Sea of Japan. Mean annual snowfall in this “gosetsu chitai” (heavy snow area) exceeds 600 cm (235 in.) in some near-sea-level cities and 1,300 cm (512 in.) in some mountain areas. Much of this snow falls from December to February during the East Asian winter monsoon when frequent cold-air outbreaks occur over the Sea of Japan. The resulting sea-effect precipitation systems share similarities with lake-effect precipitation systems of the Laurentian Great Lakes of North America, but are deeper, are modulated by the regional coastal geometry and topography, and can sometimes feature transversal mode snowbands. Snowfall can maximize in the lowlands or the adjoining mountains depending on the direction and strength of the boundary layer flow. Remarkable infrastructure exists in Japan for public safety, road and sidewalk maintenance, and avalanche mitigation, yet snow-related hazards claim more than 100 lives annually. For winter recreationists, there is no surer bet for deep powder than the mountains of Honshu and Hokkaido near the Sea of Japan in January, but the regional snow climate is vulnerable to global warming, especially in coastal areas. Historically, collaborative studies of sea- and lake-effect precipitation systems involving North American and Japanese scientists have been limited. Significant potential exists to advance our understanding and prediction of sea- and lake-effect precipitation based on studies from the Sea of Japan region and efforts involving meteorologists in North America, Japan, and other sea- and lake-effect regions.
Abstract
A remarkable snow climate exists on the Japanese islands of Honshu and Hokkaido near the Sea of Japan. Mean annual snowfall in this “gosetsu chitai” (heavy snow area) exceeds 600 cm (235 in.) in some near-sea-level cities and 1,300 cm (512 in.) in some mountain areas. Much of this snow falls from December to February during the East Asian winter monsoon when frequent cold-air outbreaks occur over the Sea of Japan. The resulting sea-effect precipitation systems share similarities with lake-effect precipitation systems of the Laurentian Great Lakes of North America, but are deeper, are modulated by the regional coastal geometry and topography, and can sometimes feature transversal mode snowbands. Snowfall can maximize in the lowlands or the adjoining mountains depending on the direction and strength of the boundary layer flow. Remarkable infrastructure exists in Japan for public safety, road and sidewalk maintenance, and avalanche mitigation, yet snow-related hazards claim more than 100 lives annually. For winter recreationists, there is no surer bet for deep powder than the mountains of Honshu and Hokkaido near the Sea of Japan in January, but the regional snow climate is vulnerable to global warming, especially in coastal areas. Historically, collaborative studies of sea- and lake-effect precipitation systems involving North American and Japanese scientists have been limited. Significant potential exists to advance our understanding and prediction of sea- and lake-effect precipitation based on studies from the Sea of Japan region and efforts involving meteorologists in North America, Japan, and other sea- and lake-effect regions.
Abstract
In August 2018 and June 2019, NCEP upgraded the operational versions of the High-Resolution Rapid Refresh (HRRR) and Global Forecast System (GFS), respectively. To inform forecasters and model developers about changes in the capabilities and biases of these modeling systems over the western conterminous United States (CONUS), we validate and compare precipitation forecasts produced by the experimental, preoperational HRRRv3 and GFSv15.0 with the then operational HRRRv2 and GFSv14 during the 2017/18 October–March cool season. We also compare the GFSv14 and GFSv15.0 with the operational, high-resolution configuration of the ECMWF Integrated Forecasting System (HRES). We validate using observations from Automated Surface and Weather Observing System (ASOS/AWOS) stations, which are located primarily in the lowlands, and observations from Snowpack Telemetry (SNOTEL) stations, which are located primarily in the uplands. Changes in bias and skill from HRRRv2 to HRRRv3 are small, with HRRRv3 exhibiting slightly higher (but statistically indistinguishable at a 95% confidence level) equitable threat scores. The GFSv14, GFSv15.0, and HRES all exhibit a wet bias at lower elevations and neutral or dry bias at upper elevations, reflecting insufficient terrain representation. GFSv15.0 performance is comparable to GFSv14 at day 1 and superior at day 3, but lags HRES. These results establish a baseline for current operational HRRR and GFS precipitation capabilities over the western CONUS and are consistent with steady or improving NCEP model performance.
Abstract
In August 2018 and June 2019, NCEP upgraded the operational versions of the High-Resolution Rapid Refresh (HRRR) and Global Forecast System (GFS), respectively. To inform forecasters and model developers about changes in the capabilities and biases of these modeling systems over the western conterminous United States (CONUS), we validate and compare precipitation forecasts produced by the experimental, preoperational HRRRv3 and GFSv15.0 with the then operational HRRRv2 and GFSv14 during the 2017/18 October–March cool season. We also compare the GFSv14 and GFSv15.0 with the operational, high-resolution configuration of the ECMWF Integrated Forecasting System (HRES). We validate using observations from Automated Surface and Weather Observing System (ASOS/AWOS) stations, which are located primarily in the lowlands, and observations from Snowpack Telemetry (SNOTEL) stations, which are located primarily in the uplands. Changes in bias and skill from HRRRv2 to HRRRv3 are small, with HRRRv3 exhibiting slightly higher (but statistically indistinguishable at a 95% confidence level) equitable threat scores. The GFSv14, GFSv15.0, and HRES all exhibit a wet bias at lower elevations and neutral or dry bias at upper elevations, reflecting insufficient terrain representation. GFSv15.0 performance is comparable to GFSv14 at day 1 and superior at day 3, but lags HRES. These results establish a baseline for current operational HRRR and GFS precipitation capabilities over the western CONUS and are consistent with steady or improving NCEP model performance.
Abstract
The conceptual model for height tendency presented by Hirschberg and Fritsch directly links upper-level virtual temperature tendency with low-level height tendency, overlooking the essential dynamics of mass divergence. An analysis of the complete height tendency equation shows that upper-level virtual temperature change car only indirectly induce low-level height change by driving ageostrophic circulations. To avoid misconceptions about middle- and lower-tropospheric height tendency, the dynamics of height tendency are reviewed.
Abstract
The conceptual model for height tendency presented by Hirschberg and Fritsch directly links upper-level virtual temperature tendency with low-level height tendency, overlooking the essential dynamics of mass divergence. An analysis of the complete height tendency equation shows that upper-level virtual temperature change car only indirectly induce low-level height change by driving ageostrophic circulations. To avoid misconceptions about middle- and lower-tropospheric height tendency, the dynamics of height tendency are reviewed.
Abstract
An evaluation of the surface sensible weather forecasts using high-density observations provided by the MesoWest cooperative networks illustrates the performance characteristics of the Cooperative Institute for Regional Prediction (CIRP) Weather Research and Forecast (WRF) and the Eta Models over the western United States during the 2003 warm season (June–August). In general, CIRP WRF produced larger 2-m temperature and dewpoint mean absolute and bias errors (MAEs and BEs, respectively) than the Eta. CIRP WRF overpredicted the 10-m wind speed, whereas the Eta exhibited an underprediction with a comparable error magnitude to CIRP WRF. Tests using the Oregon State University (OSU) Land Surface Model (LSM) in CIRP WRF, instead of a simpler slab-soil model, suggest that using a more sophisticated LSM offers no overall advantage in reducing WRF BEs and MAEs for the aforementioned surface variables. Improvements in the initialization of soil temperature in the slab-soil model, however, did reduce the temperature bias in CIRP WRF. These results suggest that improvements in LSM initialization may be as or more important than improvements in LSM physics. A concerted effort must be undertaken to improve both the LSM initialization and parameterization of coupled land surface–boundary layer processes to produce more accurate surface sensible weather forecasts.
Abstract
An evaluation of the surface sensible weather forecasts using high-density observations provided by the MesoWest cooperative networks illustrates the performance characteristics of the Cooperative Institute for Regional Prediction (CIRP) Weather Research and Forecast (WRF) and the Eta Models over the western United States during the 2003 warm season (June–August). In general, CIRP WRF produced larger 2-m temperature and dewpoint mean absolute and bias errors (MAEs and BEs, respectively) than the Eta. CIRP WRF overpredicted the 10-m wind speed, whereas the Eta exhibited an underprediction with a comparable error magnitude to CIRP WRF. Tests using the Oregon State University (OSU) Land Surface Model (LSM) in CIRP WRF, instead of a simpler slab-soil model, suggest that using a more sophisticated LSM offers no overall advantage in reducing WRF BEs and MAEs for the aforementioned surface variables. Improvements in the initialization of soil temperature in the slab-soil model, however, did reduce the temperature bias in CIRP WRF. These results suggest that improvements in LSM initialization may be as or more important than improvements in LSM physics. A concerted effort must be undertaken to improve both the LSM initialization and parameterization of coupled land surface–boundary layer processes to produce more accurate surface sensible weather forecasts.
Abstract
Although several mountain ranges surround the Great Salt Lake (GSL) of northern Utah, the extent to which orography modifies GSL-effect precipitation remains largely unknown. Here the authors use observational and numerical modeling approaches to examine the influence of orography on the GSL-effect snowstorm of 27 October 2010, which generated 6–10 mm of precipitation (snow-water equivalent) in the Salt Lake Valley and up to 30 cm of snow in the Wasatch Mountains. The authors find that the primary orographic influences on the event are 1) foehnlike flow over the upstream orography that warms and dries the incipient low-level air mass and reduces precipitation coverage and intensity; 2) orographically forced convergence that extends downstream from the upstream orography, is enhanced by blocking windward of the Promontory Mountains, and affects the structure and evolution of the lake-effect precipitation band; and 3) blocking by the Wasatch and Oquirrh Mountains, which funnels the flow into the Salt Lake Valley, reinforces the thermally driven convergence generated by the GSL, and strongly enhances precipitation. The latter represents a synergistic interaction between lake and downstream orographic processes that is crucial for precipitation development, with a dramatic decrease in precipitation intensity and coverage evident in simulations in which either the lake or the orography are removed. These results help elucidate the spectrum of lake–orographic processes that contribute to lake-effect events and may be broadly applicable to other regions where lake effect precipitation occurs in proximity to complex terrain.
Abstract
Although several mountain ranges surround the Great Salt Lake (GSL) of northern Utah, the extent to which orography modifies GSL-effect precipitation remains largely unknown. Here the authors use observational and numerical modeling approaches to examine the influence of orography on the GSL-effect snowstorm of 27 October 2010, which generated 6–10 mm of precipitation (snow-water equivalent) in the Salt Lake Valley and up to 30 cm of snow in the Wasatch Mountains. The authors find that the primary orographic influences on the event are 1) foehnlike flow over the upstream orography that warms and dries the incipient low-level air mass and reduces precipitation coverage and intensity; 2) orographically forced convergence that extends downstream from the upstream orography, is enhanced by blocking windward of the Promontory Mountains, and affects the structure and evolution of the lake-effect precipitation band; and 3) blocking by the Wasatch and Oquirrh Mountains, which funnels the flow into the Salt Lake Valley, reinforces the thermally driven convergence generated by the GSL, and strongly enhances precipitation. The latter represents a synergistic interaction between lake and downstream orographic processes that is crucial for precipitation development, with a dramatic decrease in precipitation intensity and coverage evident in simulations in which either the lake or the orography are removed. These results help elucidate the spectrum of lake–orographic processes that contribute to lake-effect events and may be broadly applicable to other regions where lake effect precipitation occurs in proximity to complex terrain.
State license plates and tourism brochures boast that Utah ski areas receive the “greatest snow on Earth,” but is there really anything special about Utah's snow? Often it is argued in ski industry brochures that Utah's snow is the greatest because it is the “driest” (i.e., has a low density or water content), yet the mean water content of snow at Alta ski area, which is world renowned for powder skiing and provides the cornerstone for Utah's famous slogan, is not lower than observed, for example, at many Colorado and Wyoming ski resorts. We propose that Alta's reputation is not based solely on mean water content, but also abundant natural snowfall. Although it cannot be shown that Utah's snow is the “greatest on Earth,” the climatology at Alta and other nearby ski areas is consistent with a high frequency of deep-powder days.
State license plates and tourism brochures boast that Utah ski areas receive the “greatest snow on Earth,” but is there really anything special about Utah's snow? Often it is argued in ski industry brochures that Utah's snow is the greatest because it is the “driest” (i.e., has a low density or water content), yet the mean water content of snow at Alta ski area, which is world renowned for powder skiing and provides the cornerstone for Utah's famous slogan, is not lower than observed, for example, at many Colorado and Wyoming ski resorts. We propose that Alta's reputation is not based solely on mean water content, but also abundant natural snowfall. Although it cannot be shown that Utah's snow is the “greatest on Earth,” the climatology at Alta and other nearby ski areas is consistent with a high frequency of deep-powder days.
Abstract
A cold-frontal passage through northern Utah was studied using observations collected during intensive observing period 4 of the Intermountain Precipitation Experiment (IPEX) on 14–15 February 2000. To illustrate some of its nonclassic characteristics, its origins are considered. The front developed following the landfall of two surface features on the Pacific coast (hereafter, the cold-frontal system). The first feature was a surface pressure trough and wind shift associated with a band of precipitation and rope cloud with little, if any, surface baroclinicity. The second, which made landfall 4 h later, was a wind shift associated with weaker precipitation that possessed a weak temperature drop at landfall (1°C in 9 h), but developed a stronger temperature drop as it moved inland over central California (4°–6°C in 9 h). As the first feature moved into the Great Basin, surface temperatures ahead of the trough increased due to downslope flow and daytime heating, whereas temperatures behind the trough decreased as precipitation cooled the near-surface air. Coupled with confluence in the lee of the Sierra Nevada, this trough developed into the principal baroclinic zone of the cold-frontal system (8°C in less than an hour), whereas the temperature drop with the second feature weakened further. The motion of the surface pressure trough was faster than the posttrough surface winds and was tied to the motion of the short-wave trough aloft. This case, along with previously published cases in the Intermountain West, challenges the traditional conceptual model of cold-frontal terminology, structure, and evolution.
Abstract
A cold-frontal passage through northern Utah was studied using observations collected during intensive observing period 4 of the Intermountain Precipitation Experiment (IPEX) on 14–15 February 2000. To illustrate some of its nonclassic characteristics, its origins are considered. The front developed following the landfall of two surface features on the Pacific coast (hereafter, the cold-frontal system). The first feature was a surface pressure trough and wind shift associated with a band of precipitation and rope cloud with little, if any, surface baroclinicity. The second, which made landfall 4 h later, was a wind shift associated with weaker precipitation that possessed a weak temperature drop at landfall (1°C in 9 h), but developed a stronger temperature drop as it moved inland over central California (4°–6°C in 9 h). As the first feature moved into the Great Basin, surface temperatures ahead of the trough increased due to downslope flow and daytime heating, whereas temperatures behind the trough decreased as precipitation cooled the near-surface air. Coupled with confluence in the lee of the Sierra Nevada, this trough developed into the principal baroclinic zone of the cold-frontal system (8°C in less than an hour), whereas the temperature drop with the second feature weakened further. The motion of the surface pressure trough was faster than the posttrough surface winds and was tied to the motion of the short-wave trough aloft. This case, along with previously published cases in the Intermountain West, challenges the traditional conceptual model of cold-frontal terminology, structure, and evolution.
Abstract
Observational analyses and numerical simulations are used to investigate the interaction of an intense extra-tropical cyclone with the coastal orography of the Pacific Northwest. Known as the “Inauguration Day cyclone,” the system made landfall upon the Washington State coast on 20 January 1993, producing one of the most damaging wind storms in Pacific Northwest history. The strongest winds accompanying the storm were associated with an intense low-level pressure gradient that was concentrated along a bent-back front. Mesoscale pressure perturbations produced by the time-dependent interaction of the cyclone and bent-back front with the coastal orography were isolated using numerical simulations. The simulations showed that during the period of peak winds over Puget Sound, there was only a minor enhancement of the local pressure gradient by troughing to the lee (east) of the Olympic Mountains. Gradual amplification of this Olympic Mountain lee trough over a period of 2–3 h extended the period of strong winds by enhancing the pressure gradient over Puget Sound as the bent-back front moved out of the region.
The influence of orographically induced coastal ridging and pressure surges was also investigated. It was found that the evolution of coastal ridging was closely connected to the progressive northward development of onshore flow behind the bent-back front. There was no evidence that a self-propagating feature, such as a Kelvin wave or gravity current, was triggered during the landfall of the cyclone and its attendant fronts. The momentum budget in the coastal zone following passage of the bent-back ftont is also discussed.
Abstract
Observational analyses and numerical simulations are used to investigate the interaction of an intense extra-tropical cyclone with the coastal orography of the Pacific Northwest. Known as the “Inauguration Day cyclone,” the system made landfall upon the Washington State coast on 20 January 1993, producing one of the most damaging wind storms in Pacific Northwest history. The strongest winds accompanying the storm were associated with an intense low-level pressure gradient that was concentrated along a bent-back front. Mesoscale pressure perturbations produced by the time-dependent interaction of the cyclone and bent-back front with the coastal orography were isolated using numerical simulations. The simulations showed that during the period of peak winds over Puget Sound, there was only a minor enhancement of the local pressure gradient by troughing to the lee (east) of the Olympic Mountains. Gradual amplification of this Olympic Mountain lee trough over a period of 2–3 h extended the period of strong winds by enhancing the pressure gradient over Puget Sound as the bent-back front moved out of the region.
The influence of orographically induced coastal ridging and pressure surges was also investigated. It was found that the evolution of coastal ridging was closely connected to the progressive northward development of onshore flow behind the bent-back front. There was no evidence that a self-propagating feature, such as a Kelvin wave or gravity current, was triggered during the landfall of the cyclone and its attendant fronts. The momentum budget in the coastal zone following passage of the bent-back ftont is also discussed.