Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: W. O'Hirok x
  • Refine by Access: All Content x
Clear All Modify Search
D. D. Turner, A. M. Vogelmann, R. T. Austin, J. C. Barnard, K. Cady-Pereira, J. C. Chiu, S. A. Clough, C. Flynn, M. M. Khaiyer, J. Liljegren, K. Johnson, B. Lin, C. Long, A. Marshak, S. Y. Matrosov, S. A. McFarlane, M. Miller, Q. Min, P. Minimis, W. O'Hirok, Z. Wang, and W. Wiscombe

Many of the clouds important to the Earth's energy balance, from the Tropics to the Arctic, contain small amounts of liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP), when the LWP is small (i.e., < 100 g m−2; clouds with LWP less than this threshold will be referred to as “thin”). Thus, the radiative properties of these thin liquid water clouds must be well understood to capture them correctly in climate models. We review the importance of these thin clouds to the Earth's energy balance, and explain the difficulties in observing them. In particular, because these clouds are thin, potentially mixed phase, and often broken (i.e., have large 3D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. The intercomparison used data collected at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site and included 18 different algorithms to evaluate their retrieved LWP, optical depth, and effective radii. Surprisingly, evaluation of the simplest case, a single-layer overcast stratocumulus, revealed that huge discrepancies exist among the various techniques, even among different algorithms that are in the same general classification. This suggests that, despite considerable advances that have occurred in the field, much more work must be done, and we discuss potential avenues for future research.)

Full access
H. W. Barker, G. L. Stephens, P. T. Partain, J. W. Bergman, B. Bonnel, K. Campana, E. E. Clothiaux, S. Clough, S. Cusack, J. Delamere, J. Edwards, K. F. Evans, Y. Fouquart, S. Freidenreich, V. Galin, Y. Hou, S. Kato, J. Li, E. Mlawer, J.-J. Morcrette, W. O'Hirok, P. Räisänen, V. Ramaswamy, B. Ritter, E. Rozanov, M. Schlesinger, K. Shibata, P. Sporyshev, Z. Sun, M. Wendisch, N. Wood, and F. Yang


The primary purpose of this study is to assess the performance of 1D solar radiative transfer codes that are used currently both for research and in weather and climate models. Emphasis is on interpretation and handling of unresolved clouds. Answers are sought to the following questions: (i) How well do 1D solar codes interpret and handle columns of information pertaining to partly cloudy atmospheres? (ii) Regardless of the adequacy of their assumptions about unresolved clouds, do 1D solar codes perform as intended?

One clear-sky and two plane-parallel, homogeneous (PPH) overcast cloud cases serve to elucidate 1D model differences due to varying treatments of gaseous transmittances, cloud optical properties, and basic radiative transfer. The remaining four cases involve 3D distributions of cloud water and water vapor as simulated by cloud-resolving models. Results for 25 1D codes, which included two line-by-line (LBL) models (clear and overcast only) and four 3D Monte Carlo (MC) photon transport algorithms, were submitted by 22 groups. Benchmark, domain-averaged irradiance profiles were computed by the MC codes. For the clear and overcast cases, all MC estimates of top-of-atmosphere albedo, atmospheric absorptance, and surface absorptance agree with one of the LBL codes to within ±2%. Most 1D codes underestimate atmospheric absorptance by typically 15–25 W m–2 at overhead sun for the standard tropical atmosphere regardless of clouds.

Depending on assumptions about unresolved clouds, the 1D codes were partitioned into four genres: (i) horizontal variability, (ii) exact overlap of PPH clouds, (iii) maximum/random overlap of PPH clouds, and (iv) random overlap of PPH clouds. A single MC code was used to establish conditional benchmarks applicable to each genre, and all MC codes were used to establish the full 3D benchmarks. There is a tendency for 1D codes to cluster near their respective conditional benchmarks, though intragenre variances typically exceed those for the clear and overcast cases. The majority of 1D codes fall into the extreme category of maximum/random overlap of PPH clouds and thus generally disagree with full 3D benchmark values. Given the fairly limited scope of these tests and the inability of any one code to perform extremely well for all cases begs the question that a paradigm shift is due for modeling 1D solar fluxes for cloudy atmospheres.

Full access
Robert F. Cahalan, Lazaros Oreopoulos, Alexander Marshak, K. Franklin Evans, Anthony B. Davis, Robert Pincus, Ken H. Yetzer, Bernhard Mayer, Roger Davies, Thomas P. Ackerman, Howard W. Barker, Eugene E. Clothiaux, Robert G. Ellingson, Michael J. Garay, Evgueni Kassianov, Stefan Kinne, Andreas Macke, William O'hirok, Philip T. Partain, Sergei M. Prigarin, Alexei N. Rublev, Graeme L. Stephens, Frederic Szczap, Ezra E. Takara, Tamas Várnai, Guoyong Wen, and Tatiana B. Zhuravleva

The interaction of clouds with solar and terrestrial radiation is one of the most important topics of climate research. In recent years it has been recognized that only a full three-dimensional (3D) treatment of this interaction can provide answers to many climate and remote sensing problems, leading to the worldwide development of numerous 3D radiative transfer (RT) codes. The international Intercomparison of 3D Radiation Codes (I3RC), described in this paper, sprung from the natural need to compare the performance of these 3D RT codes used in a variety of current scientific work in the atmospheric sciences. I3RC supports intercomparison and development of both exact and approximate 3D methods in its effort to 1) understand and document the errors/limits of 3D algorithms and their sources; 2) provide “baseline” cases for future code development for 3D radiation; 3) promote sharing and production of 3D radiative tools; 4) derive guidelines for 3D radiative tool selection; and 5) improve atmospheric science education in 3D RT. Results from the two completed phases of I3RC have been presented in two workshops and are expected to guide improvements in both remote sensing and radiative energy budget calculations in cloudy atmospheres.

Full access