Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: W.H. Fuller x
- Refine by Access: All Content x
Abstract
Liday observations of the stratosphere aerosol vertical distribution from October 1971 to July 1976 over midlatitude North America are presented. The results show the sudden increase in the stratospheric aerosol content after the eruption of the Volc´n de Fuego and its subsequent decline. The data are presented in terms of lidar scattering ratio profiles, vertically integrated aerosol backscattering, and rawinsonde temperature profiles. In the months immediately following the volcanic eruption, the lidar-derived aerosol structure is correlated with rawinsonde temperature structure showing the stratospheric temperature minimum occurring near the aerosol layer peak. Analysis of the time dependence of the integrated aerosol backscattering and the tropopause altitude indicates an approximate 0.9 correlation between aerosol loading and tropopause pressure. In addition, the integrated aerosol backscattering also showed some correlation with the minimum stratospheric temperature, i.e., a warmer stratospheric minimum is associated with a relatively higher aerosol loading.
The lidar backscatter data also show that rapid decay of the stratospheric aerosol occurred over the late winter to early spring period and that the summer to fall interval was quite stable. For both winter to summer periods of 1975 and 1976 in approximate 40% decrease in the total integrated aerosol backscattering was observed, while from January 1975 to January 1976 a 65% decrease occurred. For the 19-month period from January 1975 to July 1976 the exponential l/e decay time for the integrated aerosol backscattering was 11.6 months.
Abstract
Liday observations of the stratosphere aerosol vertical distribution from October 1971 to July 1976 over midlatitude North America are presented. The results show the sudden increase in the stratospheric aerosol content after the eruption of the Volc´n de Fuego and its subsequent decline. The data are presented in terms of lidar scattering ratio profiles, vertically integrated aerosol backscattering, and rawinsonde temperature profiles. In the months immediately following the volcanic eruption, the lidar-derived aerosol structure is correlated with rawinsonde temperature structure showing the stratospheric temperature minimum occurring near the aerosol layer peak. Analysis of the time dependence of the integrated aerosol backscattering and the tropopause altitude indicates an approximate 0.9 correlation between aerosol loading and tropopause pressure. In addition, the integrated aerosol backscattering also showed some correlation with the minimum stratospheric temperature, i.e., a warmer stratospheric minimum is associated with a relatively higher aerosol loading.
The lidar backscatter data also show that rapid decay of the stratospheric aerosol occurred over the late winter to early spring period and that the summer to fall interval was quite stable. For both winter to summer periods of 1975 and 1976 in approximate 40% decrease in the total integrated aerosol backscattering was observed, while from January 1975 to January 1976 a 65% decrease occurred. For the 19-month period from January 1975 to July 1976 the exponential l/e decay time for the integrated aerosol backscattering was 11.6 months.
Abstract
We show results from the first set of measurements conducted to validate extinction data from the satellite sensor SAM II. Dustsonde-measured number density profiles and lidar-measured backscattering profiles for two days are converted to extinction profiles using the optical modeling techniques described in the companion Paper I (Russell et al., 1981). At heights ∼2 km and more above the tropopause, the dustsonde data are used to restrict the range of model size distributions, thus reducing uncertainties in the conversion process. At all heights, measurement uncertainties for each sensor are evaluated, and these are combined with conversion uncertainties to yield the total uncertainty in derived data profiles.
The SAM II measured, dustsonde-inferred, and lidar-inferred extinction profiles for both days are shown to agree within their respective uncertainties at all heights above the tropopause. Near the tropopause, this agreement depends on the use of model size distributions with more relatively large particles (radius ≳0.6 μm) than are present in distributions used to model the main stratospheric aerosol peak. The presence of these relatively large particles is supported by measurements made elsewhere and is suggested by in situ size distribution measurements reported here. These relatively large particles near the tropopause are likely to have an important bearing on the radiative impact of the total stratospheric aerosol.
The agreement in this experiment supports the validity of the SAM II extinction data and the SAM II uncertainty estimates derived from an independent error analysis. Recommendations are given for reducing the uncertainties of future correlative experiments.
Abstract
We show results from the first set of measurements conducted to validate extinction data from the satellite sensor SAM II. Dustsonde-measured number density profiles and lidar-measured backscattering profiles for two days are converted to extinction profiles using the optical modeling techniques described in the companion Paper I (Russell et al., 1981). At heights ∼2 km and more above the tropopause, the dustsonde data are used to restrict the range of model size distributions, thus reducing uncertainties in the conversion process. At all heights, measurement uncertainties for each sensor are evaluated, and these are combined with conversion uncertainties to yield the total uncertainty in derived data profiles.
The SAM II measured, dustsonde-inferred, and lidar-inferred extinction profiles for both days are shown to agree within their respective uncertainties at all heights above the tropopause. Near the tropopause, this agreement depends on the use of model size distributions with more relatively large particles (radius ≳0.6 μm) than are present in distributions used to model the main stratospheric aerosol peak. The presence of these relatively large particles is supported by measurements made elsewhere and is suggested by in situ size distribution measurements reported here. These relatively large particles near the tropopause are likely to have an important bearing on the radiative impact of the total stratospheric aerosol.
The agreement in this experiment supports the validity of the SAM II extinction data and the SAM II uncertainty estimates derived from an independent error analysis. Recommendations are given for reducing the uncertainties of future correlative experiments.