Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: WILLIAM H. ALEXANDER x
  • Refine by Access: All Content x
Clear All Modify Search
WILLIAM H. ALEXANDER

Abstract

No Abstract Available.

Full access
WILLIAM H. ALEXANDER

Abstract

No Abstract Available.

Full access
William H. Alexander

Abstract

No Abstract Available.

Full access
William H. Alexander

Abstract

No Abstract Available.

Full access
WILLIAM H. ALEXANDER

Abstract

No Abstract Available.

Full access
William H. Alexander

Abstract

No Abstract Available.

Full access
WILLIAM H. ALEXANDER

Abstract

No Abstract Available.

Full access
WILLIAM H. ALEXANDER

Abstract

No Abstract Available.

Full access
William H. G. Roberts, David S. Battisti, and Alexander W. Tudhope

Abstract

The offline linearized ocean–atmosphere model (LOAM), which was developed to quantify the impact of the climatological mean state on the variability of the El Niño–Southern Oscillation (ENSO), is used to illuminate why ENSO changed between the modern-day and early/mid-Holocene simulations in two climate modeling studies using the NCAR Climate System Model (CSM) and the Hadley Centre Coupled Model, version 3 (HadCM3). LOAM reproduces the spatiotemporal variability simulated by the climate models and shows both the reduction in the variance of ENSO and the changes in the spatial structure of the variance during the early/mid-Holocene. The mean state changes that are important in each model are different and, in both cases, are also different from those hypothesized to be important in the original papers describing these simulations. In the CSM simulations, the ENSO mode is stabilized by the mean cooling of the SST. This reduces atmospheric heating anomalies that in turn give smaller wind stress anomalies, thus weakening the Bjerknes feedback. Within the ocean, a change in the thermocline structure alters the spatial pattern of the variance, shifting the peak variance farther east, but does not reduce the overall amount of ENSO variance. In HadCM3, the ENSO mode is stabilized by a combination of a weaker thermocline and weakened horizontal surface currents. Both of these reduce the Bjerknes feedback by reducing the ocean’s SST response to wind stress forcing. This study demonstrates the importance of considering the combined effect of a mean state change on the coupled ocean–atmosphere system: conflicting and erroneous results are obtained for both models if only one model component is considered in isolation.

Full access
Daniel Rosenfeld, William L. Woodley, Alexander Khain, William R. Cotton, Gustavo Carrió, Isaac Ginis, and Joseph H. Golden

Improving the forecasts of the intensity of tropical cyclones (TCs) remains a major challenge. One possibility for improvement is consideration of the effects that aerosols have on tropical clouds and cyclones. The authors have been pursuing this under the Hurricane Aerosol and Microphysics Program, supported by the U.S. Department of Homeland Security. This was done through observations of aerosols and resulting cloud microphysical structure within tropical cyclones and simulating their effects using high-resolution TC models that treat cloud internal processes explicitly. In addition to atmospheric aerosols, special attention was given also to the impact of the intense sea-spray-generated aerosols and convective rolls in the hurricane boundary layer (BL) under hurricane- force winds.

The results of simulations and observations show that TC ingestion of aerosols that serve as cloud condensation nuclei can lead to significant reductions in their intensities. This is caused by redistribution of the precipitation and latent heating to more vigorous convection in the storm periphery that cools the low levels and interferes with the inflow of energy to the eyewall, hence making the eye larger and the maximum winds weaker. The microphysical effects of the pollution and dust aerosols occur mainly at the peripheral clouds. Closer to the circulation center, the hurricane-force winds raise intense sea spray that is lifted efficiently in the roll vortices that form in the BL and coalesce into rain of mostly seawater already at cloud base, which dominates the microstructure and affects the dynamics of the inner convective cloud bands.

Full access