Search Results

You are looking at 1 - 10 of 54 items for

  • Author or Editor: Walter A. Petersen x
  • Refine by Access: All Content x
Clear All Modify Search
Steven A. Rutledge
and
Walter A. Petersen

Abstract

This study presents further evidence in support of an in situ, noninductive charging mechanism as the process likely responsible for significant electrification of the trailing stratiform regions of mesoscale convective systems (MCSs). In contrast to previous studies of MCS electrification that have investigated observations of radar reflectivity and cloud-to-ground lightning in the horizontal (e.g., Orville et al.; Rutledge et al.), here the relationship between the location and occurrence of cloud-to-ground lightning in the stratiform regions of midlatitude and tropical MCSs and the vertical profile of radar reflectivity are examined. The vertical profile of radar reflectivity at elevations above the 0°C level is used as a proxy for the amount of mass present in the mixed-phase region of the stratiform clouds, which in turn is related to the generation of charge through a noninductive charging mechanism.

To further explore the relationship between radar reflectivity, mixed-phase microphysics, and in situ charging by means of a noninductive mechanism, we present calculations with a simple one-dimensional model used to diagnose the presence of supercooled liquid water between the 0° and −20°C levels in the stratiform region. We use the model to contrast two cases: 1) a case in which reflectivities greater than 15 dBZ existed above the 0°C level in the stratiform clouds, cloud-to-ground lightning occurred, and moderate amounts of supercooled liquid water were present in the stratiform region (as inferred from the model results); 2) a case where no lightning was observed in the stratiform region, reflectivities above the 0°C level were less than 15 dBZ, and very little supercooled water was present (as inferred from the model results). Based on observations in several MCSs, we show that the number of cloud-to-ground lightning flashes in the stratiform region is highly correlated with the vertical radar reflectivity profile.

Full access
Walter A. Petersen
and
Steven A. Rutledge

Abstract

Observation of the vertical profile of precipitation over the global Tropics is a key objective of the Tropical Rainfall Measuring Mission (TRMM) because this information is central to obtaining vertical profiles of latent heating. This study combines both TRMM precipitation radar (PR) and Lightning Imaging Sensor (LIS) data to examine “wet-season” vertical structures of tropical precipitation across a broad spectrum of locations in the global Tropics. TRMM-PR reflectivity data (2A25 algorithm) were utilized to produce seasonal mean three-dimensional relative frequency histograms and precipitation ice water contents over grid boxes of approximately 5°–10° in latitude and longitude. The reflectivity histograms and ice water contents were then combined with LIS lightning flash densities and 2A25 mean rainfall rates to examine regional relationships between precipitation vertical structure, precipitation processes, and lightning production.

Analysis of the reflectivity vertical structure histograms and lightning flash density data reveals that 1) relative to tropical continental locations, wet-season isolated tropical oceanic locations exhibit relatively little spatial (and in some instances seasonal) variability in vertical structure across the global Tropics; 2) coastal locations and areas located within 500–1000 km of a continent exhibit considerable seasonal and spatial variability in mean vertical structure, often resembling “continental” profiles or falling intermediate to that of tropical continental and isolated oceanic regimes; and 3) interior tropical continental locations exhibit marked variability in vertical structure both spatially and seasonally, exhibiting a continuum of characteristics ranging from a near-isolated oceanic profile observed over the central Amazon and India to a more robust continental profile observed over regions such as the Congo and Florida. Examination of regional and seasonal mean conditional instability for a small but representative subset of the geographic locations suggests that tropospheric thermodynamic structure likely plays a significant role in the regional characteristics of precipitation vertical structure and associated lightning flash density.

In general, the largest systematic variability in precipitation vertical structure observed between all of the locations examined occurred above the freezing level. It is important that subfreezing temperature variability in the vertical reflectivity structures was well reflected in the seasonal mean lightning flash densities and ice water contents diagnosed for each location. In turn, systematically larger rainfall rates were observed on a pixel-by-pixel basis in locations with larger precipitation ice water content and lightning flash density. These results delineate, in a regional sense, the relative importance of mixed-phase precipitation production across the global Tropics.

Full access
Lawrence D. Carey
and
Walter A. Petersen

Abstract

Estimating raindrop size has been a long-standing objective of polarimetric radar–based precipitation retrieval methods. The relationship between the differential reflectivity Z dr and the median volume diameter D 0 is typically derived empirically using raindrop size distribution observations from a disdrometer, a raindrop physical model, and a radar scattering model. Because disdrometers are known to undersample large raindrops, the maximum drop diameter D max is often an assumed parameter in the rain physical model. C-band Z dr is sensitive to resonance scattering at drop diameters larger than 5 mm, which falls in the region of uncertainty for D max. Prior studies have not accounted for resonance scattering at C band and D max uncertainty in assessing potential errors in drop size retrievals. As such, a series of experiments are conducted that evaluate the effect of D max parameterization on the retrieval error of D 0 from a fourth-order polynomial function of C-band Z dr by varying the assumed D max through the range of assumptions found in the literature. Normalized bias errors for estimating D 0 from C-band Z dr range from −8% to 15%, depending on the postulated error in D max. The absolute normalized bias error increases with C-band Z dr, can reach 10% for Z dr as low as 1–1.75 dB, and can increase from there to values as large as 15%–45% for larger Z dr, which is a larger potential bias error than is found at S and X band. Uncertainty in D max assumptions and the associated potential D 0 retrieval errors should be noted and accounted for in future C-band polarimetric radar studies.

Full access
Andrew L. Molthan
and
Walter A. Petersen

Abstract

The Canadian CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Validation Project (C3VP) was designed to acquire aircraft, surface, and satellite observations of particle size distributions during cold season precipitation events for the purposes of validating and improving upon satellite-based retrievals of precipitation and the representation of cloud and precipitation processes within numerical weather prediction schemes. During an intensive observation period on 22 January 2007, an instrumented aircraft measured ice crystal size distributions, ice and liquid water contents, and atmospheric state parameters within a broad shield of precipitation generated by a passing midlatitude cyclone. The 94-GHz CloudSat radar acquired vertical profiles of radar reflectivity within light to moderate snowfall, coincident with C3VP surface and aircraft instrumentation. Satellite-based retrievals of cold season precipitation require relationships between remotely sensed quantities, such as radar reflectivity or brightness temperature, and the ice water content present within the sampled profile.

In this study, three methods for simulating CloudSat radar reflectivity are investigated by comparing Mie spheres, single dendrites, and fractal aggregates represented within scattering databases or parameterizations. It is demonstrated that calculations of radar backscatter from nonspherical crystal shapes are required to represent the vertical trend in CloudSat radar reflectivity for this particular event, as Mie resonance effects reduce the radar backscatter from precipitation-sized particles larger than 1 mm. Remaining differences between reflectivity from nonspherical shapes and observations are attributed to uncertainty in the mass–diameter relationships for observed crystals and disparities between naturally occurring crystals and shapes assumed in the development of ice crystal scattering databases and parameterizations.

Full access
Jackson Tan
,
Walter A. Petersen
, and
Ali Tokay

Abstract

The comparison of satellite and high-quality, ground-based estimates of precipitation is an important means to assess the confidence in satellite-based algorithms and to provide a benchmark for their continued development and future improvement. To these ends, it is beneficial to identify sources of estimation uncertainty, thereby facilitating a precise understanding of the origins of the problem. This is especially true for new datasets such as the Integrated Multisatellite Retrievals for GPM (IMERG) product, which provides global precipitation gridded at a high resolution using measurements from different sources and techniques. Here, IMERG is evaluated against a dense network of gauges in the mid-Atlantic region of the United States. A novel approach is presented, leveraging ancillary variables in IMERG to attribute the errors to the individual instruments or techniques within the algorithm. As a whole, IMERG exhibits some misses and false alarms for rain detection, while its rain-rate estimates tend to overestimate drizzle and underestimate heavy rain with considerable random error. Tracing the errors to their sources, the most reliable IMERG estimates come from passive microwave satellites, which in turn exhibit a hierarchy of performance. The morphing technique has comparable proficiency with the less skillful satellites, but infrared estimations perform poorly. The approach here demonstrated that, underlying the overall reasonable performance of IMERG, different sources have different reliability, thus enabling both IMERG users and developers to better recognize the uncertainty in the estimate. Future validation efforts are urged to adopt such a categorization to bridge between gridded rainfall and instantaneous satellite estimates.

Full access
Kenneth D. Leppert II
and
Walter A. Petersen

Abstract

It has been hypothesized that intense convective-scale “hot” towers play a role in tropical cyclogenesis via dynamic and thermodynamic feedbacks on the larger-scale circulation. In this study the authors investigate the role that widespread and/or intense lightning-producing convection (i.e., electrically hot towers) present in African easterly waves (AEWs) may play in tropical cyclogenesis over the east Atlantic Ocean.

The 700-hPa meridional wind from the NCEP–NCAR reanalysis dataset was analyzed to divide the waves into northerly, southerly, trough, and ridge phases. The AEWs were subsequently divided into waves that developed into tropical storms (i.e., developing) and those that did not develop into tropical storms (i.e., nondeveloping). Finally, composites were created using various NCEP variables, lightning data gathered with the Zeus network and worldwide lightning location network (WWLLN), and brightness temperature data extracted from the NASA global-merged infrared brightness temperature dataset.

Results indicate that in all regions examined the developing waves seem to be associated with more widespread and/or intense lightning-producing convection. This increased convection associated with the developing waves might be related to the increased midlevel moisture, low-level vorticity, low-level convergence, upper-level divergence, and increased upward vertical motion found to be associated with the developing waves. In addition, the phasing of the convection with the AEWs as they move from East Africa to the central Atlantic shows some variability, which may have implications for tropical cyclogenesis.

Full access
Walter A. Petersen
,
Steven A. Rutledge
, and
Richard E. Orville

Abstract

Recently, observations of electrified oceanic convection and associated cloud-to-ground (CG) lightning were obtained over the tropical western Pacific Ocean during TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment). During COARE, observations of convection were made using a variety of instrument platforms including ship and airborne Doppler radars, an advanced lightning direction finder (ALDF) network, and a shipborne inverted electric field mill. This study focuses on data collected by the COARE ALDF network, fusion of those data with observations, and the methods used to calculate accurate CG return stroke locations.

Analysis of CG lightning data and Doppler radar data indicates that lightning-producing oceanic convection is characterized by deep, vertically developed convective cells with radar reflectivities exceeding 30-dBZ above the height of the −10°C level. In several cases a peak in CG frequency occurred coincident with the descent of precipitation mass bounded by the 30-dBZ reflectivity contour, linking the descent of the hydrometeor mass to the occurrence of CG lightning. The diurnal cycle of oceanic CG lightning, the convective available potential energy (CAPE), and rainfall indicates a peak in all these variables in the early morning hours (local time), approximately 2 h before the peak in cold-cloud area defined by brightness temperatures of less than −65°C. Sounding data indicate a strong positive correlation between CAPE and mixed-layer wet-bulb potential temperature and a weak positive correlation between CAPE and the number of CG lightning flashes observed in a 24-h period. The data also indicate that a highly nonlinear relationship exists between the wet-bulb potential temperature and the number of CG flashes observed in a 24-h period.

Full access
David B. Wolff
,
David A. Marks
, and
Walter A. Petersen

Abstract

Accurate calibration of radar reflectivity is integral to quantitative radar measurements of precipitation and a myriad of other radar-based applications. A statistical method was developed that utilizes the probability distribution of clutter area reflectivity near a stationary, ground-based radar to provide near-real-time estimates of the relative calibration of reflectivity data. The relative calibration adjustment (RCA) method provides a valuable, automated near-real-time tool for maintaining consistently calibrated radar data with relative calibration uncertainty of ±0.5 dB or better. The original application was to S-band data in a tropical oceanic location, where the stability of the method was thought to be related to the relatively mild ground clutter and limited anomalous propagation (AP). This study demonstrates, however, that the RCA technique is transferable to other S-band radars at locations with more intense ground clutter and AP. This is done using data from NASA’s polarimetric (NPOL) surveillance radar data during the Iowa Flood Studies (IFloodS) Global Precipitation Measurement (GPM) field campaign during spring of 2013 and other deployments. Results indicate the RCA technique is well capable of monitoring the reflectivity calibration of NPOL, given proper generation of an areal clutter map. The main goal of this study is to generalize the RCA methodology for possible extension to other ground-based S-band surveillance radars and to show how it can be used both to monitor the reflectivity calibration and to correct previous data once an absolute calibration baseline is established.

Full access
Robert Cifelli
,
Lawrence Carey
,
Walter A. Petersen
, and
Steven A. Rutledge

Abstract

Dual-Doppler radar data from the Tropical Rainfall Measuring Mission Large Scale Biosphere–Atmosphere Experiment in Amazonia (TRMM-LBA) field campaign are used to determine characteristic kinematic and reflectivity vertical structures associated with precipitation features observed during the wet season in the southwest region of Amazonia. Case studies of precipitating systems during TRMM-LBA as well as overarching satellite studies have shown large differences in convective intensity associated with changes that develop in low-level easterly flow [east regime (ER)] and westerly flow [west regime (WR)]. This study attempts to examine the vertical kinematic and heating structure of convection across the spectrum of precipitation features that occurred in each regime.

Results show that convection in the ER is characterized by more intense updrafts and larger radar reflectivities above the melting level, in agreement with results from lightning detection networks. These regime differences are consistent with contrasts in composite thermal buoyancy between the regimes: above the boundary layer, the environment in the ER is characterized by a greater virtual temperature excess for near-surface rising parcels. Both regimes showed a peak in intensity during the late afternoon hours, as evidenced by radar reflectivity and kinematic characteristics, consistent with previous studies of rainfall and lightning in the Rondônia (TRMM-LBA) region. After sunset, however, convective intensity in the WR decreases much more abruptly compared to the ER. In the stratiform–weak convective region, the ER showed both reflectivity and kinematic characteristics of classic stratiform structure after sunset through the early morning hours, consistent with the life cycle of mesoscale conjective systems (MCSs). Apparent heating (Q 1) profiles were constructed for each regime assuming the vertical advection of dry static energy was the dominant forcing term. The resulting profiles show a peak centered near 8 km in the convective regions of both regimes, although the ER has a broader maximum compared to the WR. The breadth of the ER diabatic heating peak is consistent with the more dominant role of ice processes in ER convection.

Full access
Lawrence D. Carey
,
Walter A. Petersen
, and
Steven A. Rutledge

Abstract

On 30 May 1998, a tornado devastated the town of Spencer, South Dakota. The Spencer tornado (rated F4 on the Fujita tornado intensity scale) was the third and most intense of five tornadoes produced by a single supercell storm during an approximate 1-h period. The supercell produced over 76% positive cloud-to-ground (CG) lightning and a peak positive CG flash rate of 18 flashes min−1 (5-min average) during a 2-h period surrounding the tornado damage. Earlier studies have reported anomalous positive CG lightning activity in some supercell storms producing violent tornadoes. However, what makes the CG lightning activity in this tornadic storm unique is the magnitude and timing of the positive ground flashes relative to the F4 tornado. In previous studies, supercells dominated by positive CG lightning produced their most violent tornado after they attained their maximum positive ground flash rate, whenever the rate exceeded 1.5 flashes min−1. Further, tornadogenesis often occurred during a lull in CG lightning activity and sometimes during a reversal from positive to negative polarity. Contrary to these findings, the positive CG lightning flash rate and percentage of positive CG lightning in the Spencer supercell increased dramatically while the storm was producing F4 damage on Spencer.

These results have important implications for the use of CG lightning in the nowcasting of tornadoes and for the understanding of cloud electrification in these unique storms. In order to further explore these issues, the authors present detailed analyses of storm evolution and structure using Sioux Falls, South Dakota, (KFSD) Weather Surveillance Radar-1988 Doppler (WSR-88D) radar reflectivity and Doppler velocity and National Lightning Detection Network (NLDN) CG lightning data. The analyses suggest that a merger between the Spencer supercell and a squall line on its rear flank may have provided the impetus for both the F4 tornadic damage and the dramatic increase in positive CG lightning during the tornado, possibly explaining the difference in timing compared to past studies.

Full access