Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Weimiao Qian x
  • Refine by Access: All Content x
Clear All Modify Search
Yali Luo, Renhe Zhang, Weimiao Qian, Zhengzhao Luo, and Xin Hu

Abstract

Deep convection in the Tibetan Plateau–southern Asian monsoon region (TP–SAMR) is analyzed using CloudSat and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data for the boreal summer season (June–August) from 2006 to 2009. Three subregions are defined—the TP, the southern slope of the plateau (PSS), and the SAMR—and deep convection properties (such as occurrence frequency, internal vertical structure, system size, and local environment) are compared among these subregions. To cast them in a broader context, four additional regions that bear some similarity to the TP–SAMR are also discussed: East Asia (EA), tropical northwestern Pacific (NWP), and western and eastern North America (WNA and ENA, respectively).

The principal findings are as follows: 1) Compared to the other two subregions of the TP–SAMR, deep convection over the TP is shallower, less frequent, and embedded in smaller-size convection systems, but the cloud tops are more densely packed. These characteristics of deep convection over the TP are closely related to the unique local environment, namely, a significantly lower level of neutral buoyancy (LNB) and much drier atmosphere. 2) In a broader context in which all seven regions are brought together, deep convection in the two tropical regions (NWP and SAMR; mostly over ocean) is similar in many regards. A similar conclusion can be drawn among the four subtropical continental regions (TP, EA, WNA, and ENA). However, tropical oceanic and subtropical land regions present some significant contrasts: deep convection in the latter region occurs less frequently, has lower cloud tops but comparable or slightly higher tops of large radar echo (e.g., 0 and 10 dBZ), and is embedded in smaller systems. The cloud tops of the subtropical land regions are generally more densely packed. Hence, the difference between the TP and SAMR is more of a general contrast between subtropical land regions and tropical oceanic regions during the boreal summer. 3) Deep convection over the PSS possesses some uniqueness of its own because of the distinctive terrain (slopes) and moist low-level monsoon flow. 4) Results from a comparison between the daytime (1:30 p.m.) and nighttime (1:30 a.m.) overpasses are largely consistent with researchers’ general understanding of the diurnal variation of tropical and subtropical deep convection.

Full access
Yali Luo, Weimiao Qian, Renhe Zhang, and Da-Lin Zhang

Abstract

Heavy rainfall hit the Yangtze–Huai Rivers basin (YHRB) of east China several times during the prolonged 2007 mei-yu season, causing the worst flood since 1954. There has been an urgent need for attaining and processing high-quality, kilometer-scale, hourly rainfall data in order to understand the mei-yu precipitation processes, especially at the mesoβ and smaller scales. In this paper, the authors describe the construction of the 0.07°-resolution gridded hourly rainfall analysis over the YHRB region during the 2007 mei-yu season that is based on surface reports at 555 national and 6572 regional automated weather stations with an average resolution of about 7 km. The gridded hourly analysis is obtained using a modified Cressman-type objective analysis after applying strict quality control, including not only the commonly used internal temporal and spatial consistency and extreme value checks, but also verifications against mosaic radar reflectivity data. This analysis reveals many convectively generated finescale precipitation structures that could not be seen from the national station reports. A comprehensive quantitative assessment ensures the quality of the gridded hourly precipitation data. A comparison of this dataset with the U.S. Climate Prediction Center morphing technique (CMORPH) dataset on the same resolution suggests the dependence of the latter's performance on different rainfall intensity categories, with substantial underestimation of the magnitude and width of the mei-yu rainband as well as the nocturnal and morning peak rainfall amounts, due mainly to its underestimating the occurrences of heavy rainfall (i.e., >10 mm h−1).

Restricted access
Yali Luo, Hui Wang, Renhe Zhang, Weimiao Qian, and Zhengzhao Luo

Abstract

Rainfall characteristics and convective properties of monsoon precipitation systems over South China (SC) and the Yangtze and Huai River basin (YHRB) are investigated using multiple satellite products, surface rainfall observations, NCEP reanalysis, and weather maps. Comparisons between SC and YHRB are made for their monsoon active periods and their subseasonal variations from the premonsoon to monsoon and further to postmonsoon periods. The principal findings are as follows. (i) During the monsoon active period, region-averaged rain accumulation is greater in SC due to more frequent occurrence of precipitation systems; however, heavy rainfall contribution is greater in YHRB. These differences are related to more intense convective motion over the YHRB in association with the flatter land and more concurrent presence and stronger intensity of the low-level vortices and surface fronts. (ii) Largely in agreement with the subseasonal variations of the atmospheric thermodynamic conditions, convective intensity is enhanced progressively from the premonsoon to the monsoon and further to the postmonsoon period in both regions, as suggested by most convection proxies, except for lightning flash rate, which decreases substantially over SC but increases slightly over the YHRB from the premonsoon to the monsoon period. (iii) Compared to the monsoon active period, precipitation storms in both regions during the postmonsoon and monsoon break periods are more controlled by local instability due to solar heating but less controlled by larger-scale weather systems. This scale difference in the driving mechanisms leads to the smaller horizontal extent of the precipitation systems during the postmonsoon and monsoon break periods and also to the more pronounced afternoon peaks in precipitation system occurrence in the postmonsoon period.

Full access
Yali Luo, Renhe Zhang, Qilin Wan, Bin Wang, Wai Kin Wong, Zhiqun Hu, Ben Jong-Dao Jou, Yanluan Lin, Richard H. Johnson, Chih-Pei Chang, Yuejian Zhu, Xubin Zhang, Hui Wang, Rudi Xia, Juhui Ma, Da-Lin Zhang, Mei Gao, Yijun Zhang, Xi Liu, Yangruixue Chen, Huijun Huang, Xinghua Bao, Zheng Ruan, Zhehu Cui, Zhiyong Meng, Jiaxiang Sun, Mengwen Wu, Hongyan Wang, Xindong Peng, Weimiao Qian, Kun Zhao, and Yanjiao Xiao

Abstract

During the presummer rainy season (April–June), southern China often experiences frequent occurrences of extreme rainfall, leading to severe flooding and inundations. To expedite the efforts in improving the quantitative precipitation forecast (QPF) of the presummer rainy season rainfall, the China Meteorological Administration (CMA) initiated a nationally coordinated research project, namely, the Southern China Monsoon Rainfall Experiment (SCMREX) that was endorsed by the World Meteorological Organization (WMO) as a research and development project (RDP) of the World Weather Research Programme (WWRP). The SCMREX RDP (2013–18) consists of four major components: field campaign, database management, studies on physical mechanisms of heavy rainfall events, and convection-permitting numerical experiments including impact of data assimilation, evaluation/improvement of model physics, and ensemble prediction. The pilot field campaigns were carried out from early May to mid-June of 2013–15. This paper: i) describes the scientific objectives, pilot field campaigns, and data sharing of SCMREX; ii) provides an overview of heavy rainfall events during the SCMREX-2014 intensive observing period; and iii) presents examples of preliminary research results and explains future research opportunities.

Full access