Search Results

You are looking at 1 - 10 of 43 items for

  • Author or Editor: Wen Zhou x
  • All content x
Clear All Modify Search
Chao He and Wen Zhou

Abstract

Southerly wind in the lower troposphere is an essential feature of East Asian summer monsoon (EASM) circulation, which is reported to be enhanced under global warming scenarios and interglacial epochs. Based on an analysis of an ensemble of CMIP6 models, this study shows that the magnitude of intensification of the EASM circulation is much smaller under global warming scenarios than during interglacial epochs. Distinct changes in the western North Pacific subtropical high (WNPSH) are responsible for the different responses of the EASM circulation. The WNPSH is substantially enhanced during interglacial epochs, which acts to strengthen the southerly wind associated with the EASM on the western flank of the WNPSH. However, the change in the WNPSH is insignificant and cannot strengthen the EASM under global warming scenarios, and the weakly enhanced EASM circulation may be a direct response to intensified heating over the Tibetan Plateau. The land–ocean thermal contrast explains the different responses of the WNPSH. During interglacial epochs, the summertime surface warming over the subtropical North Pacific is much weaker than over Eurasia due to the large thermal inertia of the ocean to increased insolation, and the WNPSH is intensified as a response to the suppressed latent heating over the subtropical North Pacific. The fast response of the WNPSH to abrupt quadrupling of CO2 without sufficient ocean warming is an analog to the interglacial epochs, but it is offset by the effect of slow oceanic warming, resulting in an insignificant change of the WNPSH under global warming scenarios.

Restricted access
Xiuzhen Li and Wen Zhou

Abstract

The summer moisture circulation anomaly over East Asia and the western North Pacific (WNP) couples well with the El Niño–Southern Oscillation (ENSO) in a quasi-4-yr period. The moisture circulation is dominated by two well-separated modes. The first mode exhibits an anticyclonic (cyclonic) moisture circulation over tropical–subtropical East Asia–WNP with an easterly (westerly) transport over the tropical WNP–Indian Ocean; the second mode displays an alternating pattern with an anticyclonic (cyclonic) moisture circulation over the subtropical WNP layered between two cyclonic (anticyclonic) circulations. Both modes couple well with the ENSO signal during its quasi-4-yr cycle. Within the cycle, in the summer of a developing warm episode, the positive phase of the second mode plays a key role, while in the transitional summer between a decaying warm episode and a developing cool episode, the positive phase of the first mode tends to take effect. In the summer of a developing cool episode, the negative phase of the second mode plays an important role, while the negative phase of the first mode tends to take effect in the transitional summer between a decaying cool episode and a developing warm episode.

The anticyclone (cyclone) over the Philippine Sea region serves as a bridge in the quasi-four-year coupling. Its establishment and eastward extension modify moisture circulation over East Asia–WNP. Conversely, the easterly (westerly) wind to the south of the anticyclone (cyclone) is beneficial for the formation and eastward propagation of the Kelvin wave and, hence, to the development of the quasi-4-yr periodic ENSO episode.

Full access
Lin Wang, Wen Chen, Wen Zhou, and Ronghui Huang

Abstract

Interannual variations of the East Asian trough (EAT) axis at 500 hPa are studied with the European Centre for Medium-Range Weather Forecasts 40-yr reanalysis data. The associated circulation pattern and pathway of the East Asian winter monsoon (EAWM) with the EAT axis tilt are specially investigated with a trough axis index, which is closely related to the midlatitude baroclinic process and mainly represents the intensity of the eddy-driven jet over the East Asia–North Pacific sector. When the tilt of EAT is smaller than normal, the EAWM prefers to take the southern pathway and less cold air moves to the central North Pacific. However, the EAWM prefers the eastern pathway and brings more cold air to the North Pacific when the tilt of EAT is larger than normal. These differences induce pronounced changes in both the precipitation and the surface air temperature over East and Southeast Asia. Furthermore, the tilt status of the EAT has a significant modulation effect on the regional climate anomalies related to the intensity of the EAWM. The findings suggest an increase in the temperature anomaly associated with the EAWM intensity and a clear northward–southward shift in its pattern in anomalous tilt phase of the EAT. In addition, the modulation tends to be confined mainly to East Asia and expanded to a larger area during the weak and the strong EAWM winters, respectively. The possible reasons for interannual variations of the EAT tilt are discussed, and it is speculated that the midlatitude air–sea interaction in the North Pacific plays a dominant role. This study on the EAT tilt may enrich knowledge of the East Asian winter monsoon beyond the conventional intensity index and may be helpful to improve regional climate prediction in East Asia.

Full access
Hoffman H. N. Cheung and Wen Zhou

Abstract

Multiple model ensembles (MMEs) of Ural blocking frequency in 20 CMIP5 GCMs show no apparent increase or decrease in RCP4.5 and 8.5 runs throughout the twenty-first century. However, a significant increasing or decreasing trend of the Ural blocking index (UBI) is identified in individual GCMs, and the trend appears to be correlated with the trend of the Siberian high index (SHI), which measures the East Asian winter climate. Regression analyses reveal that the trend of UBI is related to upstream circulation over the Euro-Atlantic region, such as the intensification of the Atlantic jet stream and the propagation of a quasi-stationary Rossby wave across Eurasia.

In the late twenty-first century, the year-to-year variation of UBI appears to show a stronger linkage with the large-scale circulation over the Kara and Laptev Seas. Meanwhile, UB likely exerts a stronger impact on East Asia on synoptic and seasonal time scales. The uncertainty of UB might present a challenge for accurate prediction of the subseasonal and long-term variation of the East Asian winter climate. To further evaluate the uncertainty in projections of UB, additional work should assess the atmospheric response to the sea surface temperature over the Atlantic and the reduction of sea ice.

Full access
Richard C. Y. Li and Wen Zhou

Abstract

This study examines the changes in tropical cyclone (TC) precipitation and the associated contributing factors over southeast China during 1960–2009. Climatologically, TC rainfall accounts for approximately 20%–40% of the total rainfall over southeast China during boreal summer, and the contribution can even reach 50% for some of the coastal provinces, such as Guangdong, Fujian, Zhejiang, and Hainan. The dominant mode of TC rainfall reveals a dipole pattern over southern southeast China (SSC) and eastern southeast China (ESC), and the associated principal component time series exhibits remarkable interdecadal variations, with two potential change points being identified in the late 1970s and early 1990s. These interdecadal shifts in TC rainfall are also found to be synchronous with two regime shifts in total rainfall, and they can account for more than 40% of the total rainfall anomalies over the coastal regions of southeast China.

To discover the dominant factors responsible for the interdecadal variations, the overall TC rainfall anomalies are broken down into three different components (rainfall frequency, rainfall intensity, and nonlinear terms) based on a new empirical statistical approach. It is found that the interdecadal variation in TC precipitation over SSC is controlled predominantly by changes in TC rainfall intensity as well as TC rainfall frequency, while that over ESC depends mainly on the intensity and the nonlinear terms. Further examination of the TC passage frequency (TPF) suggests that the significant reduction in TPF and TC rainfall frequency over SSC during 1979–92 is associated mainly with suppressed TC genesis (negative genesis effect), while the increase in TPF and TC rainfall frequency during 1993–2009 can be attributed primarily to the enhanced passage probability (positive track effect) over SSC. Meanwhile, variations in TC rainfall intensity seem to be unrelated to the TC’s own intensity change.

Full access
Xiuzhen Li, Yongqin David Chen, and Wen Zhou

Abstract

The response of moisture circulation to the daily evolution of the India–Burma Trough (IBT) and the modulation of disturbances along the South Asian waveguide are analyzed to seek a potential precursor of winter precipitation over south China. Daily observational precipitation and reanalysis data from ERA-Interim during 1979–2012 are employed. It is found that moisture circulation in response to the IBT is part of the zonally oriented wave trains along the South Asian waveguide, but it persists longer and migrates farther eastward than other lobes. Cyclonic moisture transport enhances the moisture supply to south China as a strong IBT develops, and shifts eastward abruptly after the peak of IBT with enhanced precipitation shifting from southwest to southeast China. This response is a joint effect of synoptic, intraseasonal, and interannual components that show similar wave train structures, whereas slight differences still occur. The synoptic component shows a shorter wavelength, more southerly path, faster phase speed, and group velocity, with the signal from the North Atlantic to the Bay of Bengal (BoB) in 6 days, implying that a disturbance over the North Atlantic is a potential precursor of winter precipitation over south China. The synoptic moisture convergence is more intensive than that at other scales upstream except over Southeast Asia, where all components are comparable. This might result from the constrained moisture source from BoB at the synoptic scale because of a short wavelength, while widespread sources from BoB–western North Pacific (WNP) at other scales as wavelengths are longer.

Full access
Richard C. Y. Li and Wen Zhou

Abstract

This study investigates the interdecadal changes in summertime tropical cyclone (TC) frequency over the South China Sea (SCS) during 1979–2010. Based on changepoint detection algorithms and spectral analysis, two inactive TC periods (period 1: 1979–93 and period 3: 2003–10) and one active TC period (period 2: 1994–2002) have been identified, with a dominant spectral peak of approximately 9–10 yr. Correlation analysis further reveals a significant negative relationship between TC frequency and the zonal sea surface temperature gradient (ZSG) between the northern Indian Ocean (NIO) and the western North Pacific (WNP) at both interannual and interdecadal time scales. That is, a positive ZSG between the NIO and the WNP tends to suppress cyclogenesis over the SCS, whereas a negative ZSG is generally favorable for SCS TC formation.

The negative connection between cyclogenesis and ZSG may be explained by the influences of the ZSG on atmospheric circulations as well as Madden–Julian oscillation (MJO) activity over the SCS, which reveal prominent contrasts during the study periods. A positive ZSG between the tropical Pacific and the Indian Ocean induces an anomalous Walker-like circulation, which results in an anomalous subsidence and boundary layer divergence over the northern SCS. This also suppresses the moisture as well as MJO activity over the SCS, leading to a significant reduction in TC frequency during inactive periods 1 and 3. In contrast, a negative ZSG induces surface westerlies and favorable environmental conditions for TCs, thereby greatly enhancing SCS cyclogenesis during period 2.

Full access
Xiuzhen Li, Wen Zhou, and Yongqin David Chen

Abstract

A combination of Ward’s and k-means clustering was applied to a 3-month standardized precipitation index (SPI-03), and eight divisions of homogeneous drought variation throughout China were identified from the perspective of meteorological and agricultural droughts. A greater meridional gradient appeared over eastern China (six divisions) than over western China (two divisions).

The climate division facilitated the evaluating of not only regional but also widespread droughts. Trend evaluation showed that western north China (WNC) has become increasingly wet in recent decades, while northern northeast China (NNE) has become increasingly dry. The Yangtze River valley (YZ) tended to experience less and weaker drought after the late 1970s. Southern northeast China (SNE) and the southwestern China–Tibetan Plateau (SW-TP) showed a decreasing trend in long-term but not short-term SPIs, implying that long-term drought conditions might develop continuously, thus allowing the following droughts to develop more rapidly and with a stronger intensity. Examination of the drought risk under El Niño revealed that northern regions were likely to suffer from drought rather than flood in the developing phase and the reverse in the decaying phase. Southeastern China (SE) and the YZ were vulnerable to flood rather than drought in the mature and decaying spring, with SE subjected to drought in the decaying summer. Such a distinctive regional pattern of drought risks was closely connected with the abnormal moisture supply patterns modulated by ENSO in different phases.

Full access
Richard C. Y. Li and Wen Zhou

Abstract

This study investigates how tropical cyclone (TC) tracks and landfalls are modulated by the two major components of the intraseasonal oscillation (ISO), the 30–60-day Madden–Julian oscillation (MJO) and the 10–20-day quasi-biweekly oscillation (QBWO). In the convective phases of the MJO (phases 7 + 8 and 1 + 2), the western North Pacific Ocean (WNP) is mainly clustered with westward- and northwestward-moving TCs. The strong easterlies (southeasterlies) in the southern flank of the subtropical high lead to an increase in TC activity and landfalls in the Philippines and Vietnam (China and Japan) in phase 7 + 8 (phase 1 + 2). In the nonconvective phases (phases 3 + 4 and 5 + 6), TCs change from the original straight-moving type to the recurving type, such that the tendency for landfalls is significantly reduced. The QBWO, on the other hand, has a significant influence on TC landfalls in the Philippines and Japan. The strengthening of the subtropical high in phase 1 + 2 favors the development of westward-moving TCs and results in an increase in landfalls in the Philippines, while in phase 3 + 4 (phase 5 + 6), there is an increase (decrease) in TC activity and landfalls in Japan because of changes in genesis locations and large-scale circulations. The results herein suggest that both the MJO and QBWO exert distinctive impacts on TCs in the WNP.

Full access
Chao He, Tim Li, and Wen Zhou

Abstract

Summer monsoon rainfall supplies over 55% of annual precipitation to global monsoon regions. As shown by more than 70% of models, including 30 models from CMIP5 and 30 models from CMIP6 under high-emission scenarios, North American (NAM) monsoon rainfall decreases in a warmer climate, in sharp contrast to the robust increase in Asian–African monsoon rainfall. A hierarchy of model experiments is analyzed to understand the mechanism for the reduced NAM monsoon rainfall in this study. Modeling evidence shows that the reduction of NAM monsoon rainfall is related to both direct radiative forcing of increased CO2 concentration and SST warming, manifested as fast and slow responses to abrupt CO2 quadrupling in coupled GCMs. A cyclone anomaly forms over the Eurasian–African continental area due to enhanced land–sea thermal contrast under increased CO2 concentration, and this leads to a subsidence anomaly on its western flank, suppressing the NAM monsoon rainfall. The SST warming acts to further reduce the rainfall over the NAM monsoon region, and the El Niño–like SST warming pattern with enhanced SST warming over the equatorial Pacific plays a key role in suppressing NAM rainfall, whereas relative cooling over the subtropical North Atlantic has no contribution. A positive feedback between monsoon precipitation and atmospheric circulation helps to amplify the responses of monsoon rainfall.

Restricted access