Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Wenxia Zhang x
- Refine by Access: All Content x
Abstract
The global land monsoon region, with substantial monsoon rainfall and hence freshwater resources, is home to nearly two-thirds of the world’s population. However, it is overwhelmed by extreme precipitation, which is more intense than that on the rest of the land. Whether extreme precipitation has changed significantly, particularly in association with global warming, remains unclear for this region. This study investigates the presence of monotonic trends in extreme precipitation and its association with global warming over the past century over the global land monsoon regions, by employing the most comprehensive, long-running, and high-quality observational extreme precipitation records currently available. Based on a total of 5066 stations with at least 50 years of records, we found significant increases in the annual maximum daily precipitation and associations with global warming in regional monsoon domains, including the southern part of the South African monsoon region, the South Asian monsoon region (dominated by India), the North American monsoon region, and the eastern part of the South American monsoon region during the period of 1901–2010, with responses to global warming of ~10.4%–14.2% K−1, 7.9%–8.3% K−1, 6.4%–10.8% K−1, and 15.1%–24.8% K−1, respectively. For the global monsoon region as a whole, significant increases in extreme precipitation and associations with global warming are also identified, but with limited spatial coverage. The qualitative results on the significance of the changes on the regional scale are generally robust against different time periods, record lengths of stations, and datasets used. The uncertainty in the quantitative results arising from limited spatial and temporal coverages and use of different datasets deserves attention.
Abstract
The global land monsoon region, with substantial monsoon rainfall and hence freshwater resources, is home to nearly two-thirds of the world’s population. However, it is overwhelmed by extreme precipitation, which is more intense than that on the rest of the land. Whether extreme precipitation has changed significantly, particularly in association with global warming, remains unclear for this region. This study investigates the presence of monotonic trends in extreme precipitation and its association with global warming over the past century over the global land monsoon regions, by employing the most comprehensive, long-running, and high-quality observational extreme precipitation records currently available. Based on a total of 5066 stations with at least 50 years of records, we found significant increases in the annual maximum daily precipitation and associations with global warming in regional monsoon domains, including the southern part of the South African monsoon region, the South Asian monsoon region (dominated by India), the North American monsoon region, and the eastern part of the South American monsoon region during the period of 1901–2010, with responses to global warming of ~10.4%–14.2% K−1, 7.9%–8.3% K−1, 6.4%–10.8% K−1, and 15.1%–24.8% K−1, respectively. For the global monsoon region as a whole, significant increases in extreme precipitation and associations with global warming are also identified, but with limited spatial coverage. The qualitative results on the significance of the changes on the regional scale are generally robust against different time periods, record lengths of stations, and datasets used. The uncertainty in the quantitative results arising from limited spatial and temporal coverages and use of different datasets deserves attention.
Abstract
An integrated picture of the future changes in the water cycle is provided focusing on the global land monsoon (GLM) region, based on multimodel projections under the representative concentration pathway 8.5 (RCP8.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). We investigate the reservoirs (e.g., precipitable water, soil moisture) and water fluxes (e.g., precipitation P, evaporation E, precipitation minus evaporation P − E, and total runoff) of the water cycle. The projected intensification of the water cycle with global warming in the GLM region is reflected in robust increases in annual-mean P (multimodel median response of 0.81% K−1), E (0.57% K−1), P − E (1.58% K−1), and total runoff (2.08% K−1). Both surface (−0.83% K−1) and total soil moisture (−0.26% K−1) decrease as a result of increasing evaporative demand. Regionally, the Northern Hemispheric (NH) African, South Asian, and East Asian monsoon regions would experience an intensified water cycle, as measured by the coherent increases in P, P − E, and runoff, while the NH American monsoon region would experience a weakened water cycle. Changes in the monthly fields are more remarkable and robust than in the annual mean. An enhanced annual cycle (by ~3%–5% K−1) with a phase delay from the current climate in P, P − E, and runoff is projected, featuring an intensified water cycle in the wet season while little changes or slight weakening in the dry season. The increased seasonality and drier soils throughout the year imply increasing flood and drought risks and agricultural yields reduction. Limiting global warming to 1.5°C, the low warming target set by the Paris Agreement, could robustly reduce additional hydrological risks from increased seasonality as compared to higher warming thresholds.
Abstract
An integrated picture of the future changes in the water cycle is provided focusing on the global land monsoon (GLM) region, based on multimodel projections under the representative concentration pathway 8.5 (RCP8.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). We investigate the reservoirs (e.g., precipitable water, soil moisture) and water fluxes (e.g., precipitation P, evaporation E, precipitation minus evaporation P − E, and total runoff) of the water cycle. The projected intensification of the water cycle with global warming in the GLM region is reflected in robust increases in annual-mean P (multimodel median response of 0.81% K−1), E (0.57% K−1), P − E (1.58% K−1), and total runoff (2.08% K−1). Both surface (−0.83% K−1) and total soil moisture (−0.26% K−1) decrease as a result of increasing evaporative demand. Regionally, the Northern Hemispheric (NH) African, South Asian, and East Asian monsoon regions would experience an intensified water cycle, as measured by the coherent increases in P, P − E, and runoff, while the NH American monsoon region would experience a weakened water cycle. Changes in the monthly fields are more remarkable and robust than in the annual mean. An enhanced annual cycle (by ~3%–5% K−1) with a phase delay from the current climate in P, P − E, and runoff is projected, featuring an intensified water cycle in the wet season while little changes or slight weakening in the dry season. The increased seasonality and drier soils throughout the year imply increasing flood and drought risks and agricultural yields reduction. Limiting global warming to 1.5°C, the low warming target set by the Paris Agreement, could robustly reduce additional hydrological risks from increased seasonality as compared to higher warming thresholds.
Abstract
The Indian summer monsoon (ISM) rainfall affects a large population in South Asia. Observations show a decline in ISM rainfall from 1950 to 1999 and a recovery from 1999 to 2013. While the decline has been attributed to global warming, aerosol effects, deforestation, and a negative-to-positive phase transition of the interdecadal Pacific oscillation (IPO), the cause for the recovery remains largely unclear. Through analyses of a 57-member perturbed-parameter ensemble of model simulations, this study shows that the externally forced rainfall trend is relatively weak and is overwhelmed by large internal variability during both 1950–99 and 1999–2013. The IPO is identified as the internal mode that helps modulate the recent decline and recovery of the ISM rainfall. The IPO induces ISM rainfall changes through moisture convergence anomalies associated with an anomalous Walker circulation and meridional tropospheric temperature gradients and the resultant anomalous convection and zonal moisture advection. The negative-to-positive IPO phase transition from 1950 to 1999 reduces what would have been an externally forced weak upward rainfall trend of 0.01 to −0.15 mm day−1 decade−1 during that period, while the rainfall trend from 1999 to 2013 increases from the forced value of 0.42 to 0.68 mm day−1 decade−1 associated with a positive-to-negative IPO phase transition. Such a significant modulation of the historical ISM rainfall trends by the IPO is confirmed by another 100-member ensemble of simulations using perturbed initial conditions. Our findings highlight that the interplay between the effects of external forcing and the IPO needs be considered for climate adaptation and mitigation strategies in South Asia.
Abstract
The Indian summer monsoon (ISM) rainfall affects a large population in South Asia. Observations show a decline in ISM rainfall from 1950 to 1999 and a recovery from 1999 to 2013. While the decline has been attributed to global warming, aerosol effects, deforestation, and a negative-to-positive phase transition of the interdecadal Pacific oscillation (IPO), the cause for the recovery remains largely unclear. Through analyses of a 57-member perturbed-parameter ensemble of model simulations, this study shows that the externally forced rainfall trend is relatively weak and is overwhelmed by large internal variability during both 1950–99 and 1999–2013. The IPO is identified as the internal mode that helps modulate the recent decline and recovery of the ISM rainfall. The IPO induces ISM rainfall changes through moisture convergence anomalies associated with an anomalous Walker circulation and meridional tropospheric temperature gradients and the resultant anomalous convection and zonal moisture advection. The negative-to-positive IPO phase transition from 1950 to 1999 reduces what would have been an externally forced weak upward rainfall trend of 0.01 to −0.15 mm day−1 decade−1 during that period, while the rainfall trend from 1999 to 2013 increases from the forced value of 0.42 to 0.68 mm day−1 decade−1 associated with a positive-to-negative IPO phase transition. Such a significant modulation of the historical ISM rainfall trends by the IPO is confirmed by another 100-member ensemble of simulations using perturbed initial conditions. Our findings highlight that the interplay between the effects of external forcing and the IPO needs be considered for climate adaptation and mitigation strategies in South Asia.