Search Results
You are looking at 1 - 10 of 22 items for
- Author or Editor: Wilco Hazeleger x
- Refine by Access: All Content x
Abstract
The extratropical atmospheric response to the equatorial cold tongue mode in the Atlantic Ocean has been investigated with the coupled ocean–atmosphere model, Speedy Ocean (SPEEDO). Similar to the observations, the model simulates a lagged covariability between the equatorial cold tongue mode during late boreal summer and the east Atlantic pattern a few months later in early winter. The equatorial cold tongue mode attains its maximum amplitude during late boreal summer. However, only a few months later, when the ITCZ has moved southward, it is able to induce a significant upper-tropospheric divergence that is able to force a Rossby wave response. The lagged covariability is therefore the result of the persistence of the cold tongue anomaly and a favorable tropical atmospheric circulation a few months later. The Rossby wave energy is trapped in the South Asian subtropical jet and propagates circumglobally before it reaches the North Atlantic. Due to the local increase of the Hadley circulation, forced by the cold tongue anomaly, the subtropical jet over the North Atlantic is enhanced. The resulting increase in the vertical shear of the zonal wind increases the baroclinicity over the North Atlantic. This causes the nonlinear growth of the anomalies due to transient eddy feedbacks to be largest over the North Atlantic, resulting in an enhanced response over that region.
Abstract
The extratropical atmospheric response to the equatorial cold tongue mode in the Atlantic Ocean has been investigated with the coupled ocean–atmosphere model, Speedy Ocean (SPEEDO). Similar to the observations, the model simulates a lagged covariability between the equatorial cold tongue mode during late boreal summer and the east Atlantic pattern a few months later in early winter. The equatorial cold tongue mode attains its maximum amplitude during late boreal summer. However, only a few months later, when the ITCZ has moved southward, it is able to induce a significant upper-tropospheric divergence that is able to force a Rossby wave response. The lagged covariability is therefore the result of the persistence of the cold tongue anomaly and a favorable tropical atmospheric circulation a few months later. The Rossby wave energy is trapped in the South Asian subtropical jet and propagates circumglobally before it reaches the North Atlantic. Due to the local increase of the Hadley circulation, forced by the cold tongue anomaly, the subtropical jet over the North Atlantic is enhanced. The resulting increase in the vertical shear of the zonal wind increases the baroclinicity over the North Atlantic. This causes the nonlinear growth of the anomalies due to transient eddy feedbacks to be largest over the North Atlantic, resulting in an enhanced response over that region.
Abstract
Parameterizations of the eddy-induced velocity that advects tracers in addition to the Eulerian mean flow are traditionally expressed as a downgradient Fickian diffusion of either isopycnal layer thickness or large-scale potential vorticity (PV). There is an ongoing debate on which of the two closures is better and how the spatial dependence of the eddy diffusivity should look like. To increase the physical reasoning on which these closures are based, the authors present a systematic assessment of eddy fluxes of thickness and PV and their relation to mean-flow gradients in an isopycnic eddy-resolving model of an idealized double-gyre circulation in a flat bottom, closed basin. The simulated flow features strong nonlinearities, such as tight inertial recirculations, a meandering midlatitude jet, pools of homogenized PV, and regions of weak flow where β/h dominates the PV gradient. It is found that the zonally averaged eddy flux of thickness scales better with the zonally averaged meridional thickness gradient than the eddy flux of PV with the PV gradient. The reason for this is that the two-scale approximation, which is often invoked to derive a balance between the downgradient eddy flux of PV and enstrophy dissipation, does not hold. It is obscured by advection of perturbation enstrophy, which is multisigned and weakly related to mean-flow gradients. On the other hand, forcing by vertical motions, which enters the balance between the downgradient eddy flux of thickness and dissipation in most cases, acts to dissipate thickness variance. It is dominated by the conversion from potential to kinetic energy and the subsequent downgradient transport of thickness. Also, advection of perturbation thickness variance tends to be more single-signed than advection of perturbation enstrophy, forcing the eddy flux of thickness to be more often down the mean gradient. As a result, in the present configuration a downgradient diffusive closure for thickness seems more appropriate to simulate the divergent eddy fluxes than a downgradient diffusive closure for PV, especially in dynamically active regions where the eddy fluxes are large and in regions of nearly uniform PV.
Abstract
Parameterizations of the eddy-induced velocity that advects tracers in addition to the Eulerian mean flow are traditionally expressed as a downgradient Fickian diffusion of either isopycnal layer thickness or large-scale potential vorticity (PV). There is an ongoing debate on which of the two closures is better and how the spatial dependence of the eddy diffusivity should look like. To increase the physical reasoning on which these closures are based, the authors present a systematic assessment of eddy fluxes of thickness and PV and their relation to mean-flow gradients in an isopycnic eddy-resolving model of an idealized double-gyre circulation in a flat bottom, closed basin. The simulated flow features strong nonlinearities, such as tight inertial recirculations, a meandering midlatitude jet, pools of homogenized PV, and regions of weak flow where β/h dominates the PV gradient. It is found that the zonally averaged eddy flux of thickness scales better with the zonally averaged meridional thickness gradient than the eddy flux of PV with the PV gradient. The reason for this is that the two-scale approximation, which is often invoked to derive a balance between the downgradient eddy flux of PV and enstrophy dissipation, does not hold. It is obscured by advection of perturbation enstrophy, which is multisigned and weakly related to mean-flow gradients. On the other hand, forcing by vertical motions, which enters the balance between the downgradient eddy flux of thickness and dissipation in most cases, acts to dissipate thickness variance. It is dominated by the conversion from potential to kinetic energy and the subsequent downgradient transport of thickness. Also, advection of perturbation thickness variance tends to be more single-signed than advection of perturbation enstrophy, forcing the eddy flux of thickness to be more often down the mean gradient. As a result, in the present configuration a downgradient diffusive closure for thickness seems more appropriate to simulate the divergent eddy fluxes than a downgradient diffusive closure for PV, especially in dynamically active regions where the eddy fluxes are large and in regions of nearly uniform PV.
Abstract
The Arctic is warming 2 to 3 times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (e.g., 2007 and 2012). Considering that the Arctic Ocean is mainly ice covered and that the albedo of sea ice is very high compared to that of open water, any change in sea ice cover will have a strong impact on the climate response through the radiative surface albedo feedback. Since sea ice area is projected to shrink considerably, this feedback will likely vary considerably in time. Feedbacks are usually evaluated as being constant in time, even though feedbacks and climate sensitivity depend on the climate state. Here the authors assess and quantify these temporal changes in the strength of the surface albedo feedback in response to global warming. Analyses unequivocally demonstrate that the strength of the surface albedo feedback exhibits considerable temporal variations. Specifically, the strength of the surface albedo feedback in the Arctic, evaluated for simulations of the future climate (CMIP5 RCP8.5) using a kernel method, shows a distinct peak around the year 2100. This maximum is found to be linked to increased seasonality in sea ice cover when sea ice recedes, in which sea ice retreat during spring turns out to be the dominant factor affecting the strength of the annual surface albedo feedback in the Arctic. Hence, changes in sea ice seasonality and the associated fluctuations in surface albedo feedback strength will exert a time-varying effect on Arctic amplification during the projected warming over the next century.
Abstract
The Arctic is warming 2 to 3 times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (e.g., 2007 and 2012). Considering that the Arctic Ocean is mainly ice covered and that the albedo of sea ice is very high compared to that of open water, any change in sea ice cover will have a strong impact on the climate response through the radiative surface albedo feedback. Since sea ice area is projected to shrink considerably, this feedback will likely vary considerably in time. Feedbacks are usually evaluated as being constant in time, even though feedbacks and climate sensitivity depend on the climate state. Here the authors assess and quantify these temporal changes in the strength of the surface albedo feedback in response to global warming. Analyses unequivocally demonstrate that the strength of the surface albedo feedback exhibits considerable temporal variations. Specifically, the strength of the surface albedo feedback in the Arctic, evaluated for simulations of the future climate (CMIP5 RCP8.5) using a kernel method, shows a distinct peak around the year 2100. This maximum is found to be linked to increased seasonality in sea ice cover when sea ice recedes, in which sea ice retreat during spring turns out to be the dominant factor affecting the strength of the annual surface albedo feedback in the Arctic. Hence, changes in sea ice seasonality and the associated fluctuations in surface albedo feedback strength will exert a time-varying effect on Arctic amplification during the projected warming over the next century.
Abstract
The ventilation of the Equatorial Undercurrent (EUC) in the Atlantic is investigated using data from a high-resolution ocean model. Overturning streamfunctions, subduction patterns, and pathways are determined from Eulerian and Lagrangian mean transports. The role of high-frequency variability is highlighted. The meridional overturning circulation shows that the EUC is mainly ventilated from the south. This is seen because transports induced by high-frequency variability compensate for tropical cells that are associated with downwelling at 5° poleward of the equator and upwelling at the equator. The impact of high-frequency variability is large, especially to the north of the equator. Lagrangian trajectory analysis shows that the main subduction sites that ventilate the EUC are located along the South Equatorial Current: one region in the southwest and one in the central subtropical South Atlantic. From these sites water masses transfer toward the western boundary. Following the boundary they finally enter the EUC. A small portion of water in the EUC originates from a region along the North Equatorial Current (NEC). These water masses follow mainly a pathway through the interior of the basin toward the EUC. Seasonal variations in the mixed layer depth lead to spreading subduction sites. High-frequency transport variations act to reduce subduction in the western Tropics and shift the subduction region along the NEC toward the northeast.
Abstract
The ventilation of the Equatorial Undercurrent (EUC) in the Atlantic is investigated using data from a high-resolution ocean model. Overturning streamfunctions, subduction patterns, and pathways are determined from Eulerian and Lagrangian mean transports. The role of high-frequency variability is highlighted. The meridional overturning circulation shows that the EUC is mainly ventilated from the south. This is seen because transports induced by high-frequency variability compensate for tropical cells that are associated with downwelling at 5° poleward of the equator and upwelling at the equator. The impact of high-frequency variability is large, especially to the north of the equator. Lagrangian trajectory analysis shows that the main subduction sites that ventilate the EUC are located along the South Equatorial Current: one region in the southwest and one in the central subtropical South Atlantic. From these sites water masses transfer toward the western boundary. Following the boundary they finally enter the EUC. A small portion of water in the EUC originates from a region along the North Equatorial Current (NEC). These water masses follow mainly a pathway through the interior of the basin toward the EUC. Seasonal variations in the mixed layer depth lead to spreading subduction sites. High-frequency transport variations act to reduce subduction in the western Tropics and shift the subduction region along the NEC toward the northeast.
Abstract
Interactions between the atmosphere and ocean play a crucial role in redistributing energy, thereby maintaining the energy balance of the climate system. Here, we examine the compensation between the atmosphere and ocean’s heat transport variations. Motivated by previous studies with mostly numerical climate models, this so-called Bjerknes compensation is studied using reanalysis datasets. We find that atmospheric energy transport (AMET) and oceanic energy transport (OMET) variability generally agree well among the reanalysis datasets. With multiple reanalysis products, we show that Bjerknes compensation is present at almost all latitudes from 40° to 70°N in the Northern Hemisphere from interannual to decadal time scales. The compensation rates peak at different latitudes across different time scales, but they are always located in the subtropical and subpolar regions. Unlike some experiments with numerical climate models, which attribute the compensation to the variation of transient eddy transports in response to the changes of OMET at multidecadal time scales, we find that the response of mean flow to the OMET variability leads to the Bjerknes compensation, and thus the shift of the Ferrel cell at midlatitudes at decadal time scales in winter. This cell itself is driven by the eddy momentum flux. The oceanic response to AMET variations is primarily wind driven. In summer, there is hardly any compensation and the proposed mechanism is not applicable. Given the short historical records, we cannot determine whether the ocean drives the atmospheric variations or the reverse.
Abstract
Interactions between the atmosphere and ocean play a crucial role in redistributing energy, thereby maintaining the energy balance of the climate system. Here, we examine the compensation between the atmosphere and ocean’s heat transport variations. Motivated by previous studies with mostly numerical climate models, this so-called Bjerknes compensation is studied using reanalysis datasets. We find that atmospheric energy transport (AMET) and oceanic energy transport (OMET) variability generally agree well among the reanalysis datasets. With multiple reanalysis products, we show that Bjerknes compensation is present at almost all latitudes from 40° to 70°N in the Northern Hemisphere from interannual to decadal time scales. The compensation rates peak at different latitudes across different time scales, but they are always located in the subtropical and subpolar regions. Unlike some experiments with numerical climate models, which attribute the compensation to the variation of transient eddy transports in response to the changes of OMET at multidecadal time scales, we find that the response of mean flow to the OMET variability leads to the Bjerknes compensation, and thus the shift of the Ferrel cell at midlatitudes at decadal time scales in winter. This cell itself is driven by the eddy momentum flux. The oceanic response to AMET variations is primarily wind driven. In summer, there is hardly any compensation and the proposed mechanism is not applicable. Given the short historical records, we cannot determine whether the ocean drives the atmospheric variations or the reverse.
Abstract
Transient eddies in the atmosphere induce a poleward transport of heat and moisture. A moist static energy budget of the surface layer is determined from the NCEP reanalysis data to evaluate the impact of the storm track. It is found that the transient eddies induce a cooling and drying of the surface layer with a monthly mean maximum of 60 W m−2. The cooling in the midlatitudes extends zonally over the entire basin. The impact of this cooling and drying on surface heat fluxes, sea surface temperature (SST), water mass transformation, and vertical structure of the Pacific is investigated using an ocean model coupled to an atmospheric mixed layer model. The cooling by atmospheric storms is represented by adding an eddy-induced transfer velocity to the mean velocity in an atmospheric mixed layer model. This is based on a parameterization of tracer transport by eddies in the ocean. When the atmospheric mixed layer model is coupled to an ocean model, realistic SSTs are simulated. The SST is up to 3 K lower due to the cooling by storms. The additional cooling leads to enhanced transformation rates of water masses in the midlatitudes. The enhanced shallow overturning cells affect even tropical regions. Together with realistic SST and deep winter mixed layer depths, this leads to formation of homogeneous water masses in the upper North Pacific, in accordance to observations.
Abstract
Transient eddies in the atmosphere induce a poleward transport of heat and moisture. A moist static energy budget of the surface layer is determined from the NCEP reanalysis data to evaluate the impact of the storm track. It is found that the transient eddies induce a cooling and drying of the surface layer with a monthly mean maximum of 60 W m−2. The cooling in the midlatitudes extends zonally over the entire basin. The impact of this cooling and drying on surface heat fluxes, sea surface temperature (SST), water mass transformation, and vertical structure of the Pacific is investigated using an ocean model coupled to an atmospheric mixed layer model. The cooling by atmospheric storms is represented by adding an eddy-induced transfer velocity to the mean velocity in an atmospheric mixed layer model. This is based on a parameterization of tracer transport by eddies in the ocean. When the atmospheric mixed layer model is coupled to an ocean model, realistic SSTs are simulated. The SST is up to 3 K lower due to the cooling by storms. The additional cooling leads to enhanced transformation rates of water masses in the midlatitudes. The enhanced shallow overturning cells affect even tropical regions. Together with realistic SST and deep winter mixed layer depths, this leads to formation of homogeneous water masses in the upper North Pacific, in accordance to observations.
Abstract
Pacific Ocean oceanic heat transport is studied in an ocean model coupled to an atmospheric mixed-layer model. The shallow meridional overturning circulation cells in the Tropics and subtropics transport heat away from the equator. The heat transport by the horizontal gyre circulation in the Tropics is smaller and directed toward the equator. The response of the Pacific oceanic heat transport to El Niño–like winds, extratropical winds, and variations in the Indonesian Throughflow is studied. Large, opposing changes are found in the heat transport by the meridional overturning and the horizontal gyres in response to El Niño–like winds. Consequently, the change in total heat transport is relatively small. The overturning transport decreases and the gyres spin down when the winds decrease in the Tropics. This compensation breaks down when the Indonesian Throughflow is allowed to vary in the model. A reduced Indonesian Throughflow, as observed during El Niño–like conditions, causes a large reduction of poleward heat transport in the South Pacific and affects the ocean heat transport in the southern tropical Pacific. Extratropical atmospheric anomalies can affect tropical ocean heat transport as the tropical thermocline is ventilated from the extratropics. The authors find that changes in the heat loss in the midlatitudes affect tropical ocean heat transport by driving an enhanced buoyancy-driven overturning that reaches into the Tropics. The results are related to observed changes in the overturning circulation in the Pacific in the 1990s, sea surface temperarture changes, and changes in atmospheric circulation. The results imply that the ratio of heat transport in the ocean to that in the atmosphere can change.
Abstract
Pacific Ocean oceanic heat transport is studied in an ocean model coupled to an atmospheric mixed-layer model. The shallow meridional overturning circulation cells in the Tropics and subtropics transport heat away from the equator. The heat transport by the horizontal gyre circulation in the Tropics is smaller and directed toward the equator. The response of the Pacific oceanic heat transport to El Niño–like winds, extratropical winds, and variations in the Indonesian Throughflow is studied. Large, opposing changes are found in the heat transport by the meridional overturning and the horizontal gyres in response to El Niño–like winds. Consequently, the change in total heat transport is relatively small. The overturning transport decreases and the gyres spin down when the winds decrease in the Tropics. This compensation breaks down when the Indonesian Throughflow is allowed to vary in the model. A reduced Indonesian Throughflow, as observed during El Niño–like conditions, causes a large reduction of poleward heat transport in the South Pacific and affects the ocean heat transport in the southern tropical Pacific. Extratropical atmospheric anomalies can affect tropical ocean heat transport as the tropical thermocline is ventilated from the extratropics. The authors find that changes in the heat loss in the midlatitudes affect tropical ocean heat transport by driving an enhanced buoyancy-driven overturning that reaches into the Tropics. The results are related to observed changes in the overturning circulation in the Pacific in the 1990s, sea surface temperarture changes, and changes in atmospheric circulation. The results imply that the ratio of heat transport in the ocean to that in the atmosphere can change.
Abstract
The atmospheric energy transport variability associated with decadal sea surface temperature variability in the tropical Pacific is studied using an atmospheric primitive equation model coupled to a slab mixed layer. The decadal variability is prescribed as an anomalous surface heat flux that represents the reduced ocean heat transport in the tropical Pacific when it is anomalously warm. The atmospheric energy transport increases and compensates for the reduced ocean heat transport. Increased transport by the mean meridional overturning (i.e., the strengthening of the Hadley cells) causes increased poleward energy transport. The subtropical jets increase in strength and shift equatorward, and in the midlatitudes the transients are affected. NCEP–NCAR reanalysis data show that the warming of the tropical Pacific in the 1980s compared to the early 1970s seems to have caused very similar changes in atmospheric energy transport indicating that these atmospheric transport variations were driven from the tropical Pacific. To study the implication of these changes for the coupled climate system an ocean model is driven with winds obtained from the atmosphere model. The poleward ocean heat transport increased when simulated wind anomalies associated with decadal tropical Pacific variability were used, showing a negative feedback between decadal variations in the mean meridional circulation in the atmosphere and in the Pacific Ocean. The Hadley cells and subtropical cells act to stabilize each other on the decadal time scale.
Abstract
The atmospheric energy transport variability associated with decadal sea surface temperature variability in the tropical Pacific is studied using an atmospheric primitive equation model coupled to a slab mixed layer. The decadal variability is prescribed as an anomalous surface heat flux that represents the reduced ocean heat transport in the tropical Pacific when it is anomalously warm. The atmospheric energy transport increases and compensates for the reduced ocean heat transport. Increased transport by the mean meridional overturning (i.e., the strengthening of the Hadley cells) causes increased poleward energy transport. The subtropical jets increase in strength and shift equatorward, and in the midlatitudes the transients are affected. NCEP–NCAR reanalysis data show that the warming of the tropical Pacific in the 1980s compared to the early 1970s seems to have caused very similar changes in atmospheric energy transport indicating that these atmospheric transport variations were driven from the tropical Pacific. To study the implication of these changes for the coupled climate system an ocean model is driven with winds obtained from the atmosphere model. The poleward ocean heat transport increased when simulated wind anomalies associated with decadal tropical Pacific variability were used, showing a negative feedback between decadal variations in the mean meridional circulation in the atmosphere and in the Pacific Ocean. The Hadley cells and subtropical cells act to stabilize each other on the decadal time scale.
Abstract
The influence of the meridional overturning circulation on tropical Atlantic climate and variability has been investigated using the atmosphere–ocean coupled model Speedy-MICOM (Miami Isopycnic Coordinate Ocean Model). In the ocean model MICOM the strength of the meridional overturning cell can be regulated by specifying the lateral boundary conditions. In case of a collapse of the basinwide meridional overturning cell the SST response in the Atlantic is characterized by a dipole with a cooling in the North Atlantic and a warming in the tropical and South Atlantic. The cooling in the North Atlantic is due to the decrease in the strength of the western boundary currents, which reduces the northward advection of heat. The warming in the tropical Atlantic is caused by a reduced ventilation of water originating from the South Atlantic. This effect is most prominent in the eastern tropical Atlantic during boreal summer when the mixed layer attains its minimum depth. As a consequence the seasonal cycle as well as the interannual variability in SST is reduced. The characteristics of the cold tongue mode are changed: the variability in the eastern equatorial region is strongly reduced and the largest variability is now in the Benguela, Angola region. Because of the deepening of the equatorial thermocline, variations in the thermocline depth in the eastern tropical Atlantic no longer significantly affect the mixed layer temperature. The gradient mode remains unaltered. The warming of the tropical Atlantic enhances and shifts the Hadley circulation. Together with the cooling in the North Atlantic, this increases the strength of the subtropical jet and the baroclinicity over the North Atlantic.
Abstract
The influence of the meridional overturning circulation on tropical Atlantic climate and variability has been investigated using the atmosphere–ocean coupled model Speedy-MICOM (Miami Isopycnic Coordinate Ocean Model). In the ocean model MICOM the strength of the meridional overturning cell can be regulated by specifying the lateral boundary conditions. In case of a collapse of the basinwide meridional overturning cell the SST response in the Atlantic is characterized by a dipole with a cooling in the North Atlantic and a warming in the tropical and South Atlantic. The cooling in the North Atlantic is due to the decrease in the strength of the western boundary currents, which reduces the northward advection of heat. The warming in the tropical Atlantic is caused by a reduced ventilation of water originating from the South Atlantic. This effect is most prominent in the eastern tropical Atlantic during boreal summer when the mixed layer attains its minimum depth. As a consequence the seasonal cycle as well as the interannual variability in SST is reduced. The characteristics of the cold tongue mode are changed: the variability in the eastern equatorial region is strongly reduced and the largest variability is now in the Benguela, Angola region. Because of the deepening of the equatorial thermocline, variations in the thermocline depth in the eastern tropical Atlantic no longer significantly affect the mixed layer temperature. The gradient mode remains unaltered. The warming of the tropical Atlantic enhances and shifts the Hadley circulation. Together with the cooling in the North Atlantic, this increases the strength of the subtropical jet and the baroclinicity over the North Atlantic.
Abstract
A model study has been made of the mechanisms of the meridional mode in the northern tropical Atlantic (NTA) and the response to a doubling of atmospheric CO2. The numerical model consists of an atmospheric general circulation model (GCM) coupled to a passive mixed layer model for the ocean. Results from two simulations are shown: a control run with present-day atmospheric CO2 and a run with a doubled CO2 concentration. The results from the control run show that the wind–evaporation–SST (WES) feedback is confined to the deep NTA. Furthermore, the temporal evolution of the meridional mode is phase locked with the seasonal cycle of the climatological intertropical convergence zone (CITCZ). The WES feedback is positive in boreal winter and spring when the CITCZ is located close to the equator but negative in summer and fall when the CITCZ shifts toward the north of the deep NTA. Similarly, the damping of the SST anomalies in the deep NTA by moisture-induced evaporation anomalies is much stronger in summer and fall than in winter and spring, related to a change in anomalous moisture transport. The results from the double-CO2 run show a substantial northward shift of the CITCZ in boreal winter and spring but little change in summer and fall. The change in the CITCZ can be explained by strong warming at the high northern latitudes in combination with a seasonally dependent WES feedback with accompanying changes in moisture transport in the deep NTA. The latter indicates that the change in the CITCZ is subject to phase locking with the seasonal cycle of the CITCZ itself. The meridional mode in the double-CO2 run weakens by 10%–20%. This originates from the weakening of the positive WES feedback in the deep NTA, which in turn is attributed to the northward shift of the CITCZ; because in the double-CO2 run the CITCZ stays south of the deep NTA for a shorter time period, the positive WES feedback in the deep NTA acts less long, and damping by moisture-induced evaporation anomalies starts earlier than in the control run.
Abstract
A model study has been made of the mechanisms of the meridional mode in the northern tropical Atlantic (NTA) and the response to a doubling of atmospheric CO2. The numerical model consists of an atmospheric general circulation model (GCM) coupled to a passive mixed layer model for the ocean. Results from two simulations are shown: a control run with present-day atmospheric CO2 and a run with a doubled CO2 concentration. The results from the control run show that the wind–evaporation–SST (WES) feedback is confined to the deep NTA. Furthermore, the temporal evolution of the meridional mode is phase locked with the seasonal cycle of the climatological intertropical convergence zone (CITCZ). The WES feedback is positive in boreal winter and spring when the CITCZ is located close to the equator but negative in summer and fall when the CITCZ shifts toward the north of the deep NTA. Similarly, the damping of the SST anomalies in the deep NTA by moisture-induced evaporation anomalies is much stronger in summer and fall than in winter and spring, related to a change in anomalous moisture transport. The results from the double-CO2 run show a substantial northward shift of the CITCZ in boreal winter and spring but little change in summer and fall. The change in the CITCZ can be explained by strong warming at the high northern latitudes in combination with a seasonally dependent WES feedback with accompanying changes in moisture transport in the deep NTA. The latter indicates that the change in the CITCZ is subject to phase locking with the seasonal cycle of the CITCZ itself. The meridional mode in the double-CO2 run weakens by 10%–20%. This originates from the weakening of the positive WES feedback in the deep NTA, which in turn is attributed to the northward shift of the CITCZ; because in the double-CO2 run the CITCZ stays south of the deep NTA for a shorter time period, the positive WES feedback in the deep NTA acts less long, and damping by moisture-induced evaporation anomalies starts earlier than in the control run.