Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: William H. Beasley x
  • All content x
Clear All Modify Search
Frank W. Gallagher III, William H. Beasley, and Craig F. Bohren

Green thunderstorms have been observed from time to time in association with deep convection or severe weather events. Often the green coloration has been attributed to hail or to reflections of light from green foliage on the ground. Some skeptics who have not personally observed a green thunderstorm do not believe that green thunderstorms exist. They suggest that the green storms may be fabrications by excited observers. The authors have demonstrated the existence of green thunderstorms objectively using a spectrophotometer. During the spring and summer of 1995 the authors observed numerous storms and recorded hundreds of spectra of the light emanating from these storms. It was found that the subjective judgment of colors can vary somewhat between observers, but the variation is usually in the shade of green. The authors recorded spectra of green and nongreen thunderstorms and recorded spectral measurements as a storm changed its appearance from dark blue to a bluish green. The change in color is gradual when observed from a stationary position. Also, as the light from a storm becomes greener, the luminance decreases. The authors also observed and recorded the spectrum of a thunderstorm during a period of several hours as they flew in an aircraft close to a supercell that appeared somewhat green. The authors' observations refute the ground reflection hypothesis and raise questions about explanations that require the presence of hail.

Full access
Jeffrey A. Makowski, Donald R. MacGorman, Michael I. Biggerstaff, and William H. Beasley

Abstract

The advent of regional very high frequency (VHF) Lightning Mapping Arrays (LMAs) makes it possible to begin analyzing trends in total lightning characteristics in ensembles of mesoscale convective systems (MCSs). Flash initiations observed by the Oklahoma LMA and ground strikes observed by the National Lightning Detection Network were surveyed relative to infrared satellite and base-scan radar reflectivity imagery for 30 mesoscale convective systems occurring over a 7-yr period. Total lightning data were available for only part of the life cycle of most MCSs, but well-defined peaks in flash rates were usually observed for MCSs having longer periods of data. The mean of the maximum 10-min flash rates for the ensemble of MCSs was 203 min−1 for total flashes and 41 min−1 for cloud-to-ground flashes (CGs). In total, 21% of flashes were CGs and 13% of CGs lowered positive charge to ground. MCSs with the largest maximum flash rates entered Oklahoma in the evening before midnight. All three MCSs entering Oklahoma in early morning after sunrise had among the smallest maximum flash rates. Flash initiations were concentrated in or near regions of larger reflectivity and colder cloud tops. The CG flash rates and total flash rates frequently evolved similarly, although the fraction of flashes striking ground usually increased as an MCS decayed. Total flash rates tended to peak approximately 90 min before the maximum area of the −52°C cloud shield, but closer in time to the maximum area of colder cloud shields. MCSs whose −52°C cloud shield grew faster tended to have larger flash rates.

Full access
David R. Smith, Ira W. Geer, Robert S. Weinbeck, John T. Snow, and William H. Beasley

During the summer of 1993, Project ATMOSPHERE, in cooperation with the University of Oklahoma School of Meteorology, conducted a workshop to enhance both the meteorological background and leadership skills of AMS Atmospheric Education Resource Agents (AERAs). Fifty-eight teachers representing 39 states and the District of Columbia attended this workshop, which focused on atmospheric water processes and severe local storms. In addition to lectures and laboratory activities, AERAs also visited a variety of research and operational support facilities in the Norman area. This workshop was the third phase of training for AERAs, who represent the AMS in their local areas, providing instructional guidance for teachers and curricular input on the atmospheric sciences to their respective local and state educational agencies.

Full access
Matthew S. Van Den Broeke, William H. Beasley, and Michael B. Richman

Abstract

During the summer of 2006, daily observations of crepuscular and anticrepuscular rays were made around sunset from central Oklahoma. A relative scale of ray intensity was developed and used to relate the rays to concurrent meteorological conditions. Evidence is presented suggesting that both topography and clouds can cast shadows leading to rays. Relationships are hypothesized between estimated ray intensity and atmospheric variables, and predictive equations are developed for ray intensity and assessed using data from the summer of 2008. Except for a few cases in which rays were traced back to topography east of the Rocky Mountains, the most intense rays were produced by towering cumulus (Cu) and cumulonimbus (Cb) clouds to the west after hot days with light winds.

Full access
Donald R. MacGorman, W. David Rust, Terry J. Schuur, Michael I. Biggerstaff, Jerry M. Straka, Conrad L. Ziegler, Edward R. Mansell, Eric C. Bruning, Kristin M. Kuhlman, Nicole R. Lund, Nicholas S. Biermann, Clark Payne, Larry D. Carey, Paul R. Krehbiel, William Rison, Kenneth B. Eack, and William H. Beasley

The field program of the Thunderstorm Electrification and Lightning Experiment (TELEX) took place in central Oklahoma, May–June 2003 and 2004. It aimed to improve understanding of the interrelationships among microphysics, kinematics, electrification, and lightning in a broad spectrum of storms, particularly squall lines and storms whose electrical structure is inverted from the usual vertical polarity. The field program was built around two permanent facilities: the KOUN polarimetric radar and the Oklahoma Lightning Mapping Array. In addition, balloon-borne electric-field meters and radiosondes were launched together from a mobile laboratory to measure electric fields, winds, and standard thermodynamic parameters inside storms. In 2004, two mobile C-band Doppler radars provided high-resolution coordinated volume scans, and another mobile facility provided the environmental soundings required for modeling studies. Data were obtained from 22 storm episodes, including several small isolated thunderstorms, mesoscale convective systems, and supercell storms. Examples are presented from three storms. A heavy-precipitation supercell storm on 29 May 2004 produced greater than three flashes per second for 1.5 h. Holes in the lightning density formed and dissipated sequentially in the very strong updraft and bounded weak echo region of the mesocyclone. In a small squall line on 19 June 2004, most lightning flashes in the stratiform region were initiated in or near strong updrafts in the convective line and involved positive charge in the upper part of the radar bright band. In a small thunderstorm on 29 June 2004, lightning activity began as polarimetric signatures of graupel first appeared near lightning initiation regions.

Full access