Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: William J. Sacks x
  • All content x
Clear All Modify Search
Miren Vizcaíno, William H. Lipscomb, William J. Sacks, and Michiel van den Broeke

Abstract

This study presents the first twenty-first-century projections of surface mass balance (SMB) changes for the Greenland Ice Sheet (GIS) with the Community Earth System Model (CESM), which includes a new ice sheet component. For glaciated surfaces, CESM includes a sophisticated calculation of energy fluxes, surface albedo, and snowpack hydrology (melt, percolation, refreezing, etc.). To efficiently resolve the high SMB gradients at the ice sheet margins and provide surface forcing at the scale needed by ice sheet models, the SMB is calculated at multiple elevations and interpolated to a finer 5-km ice sheet grid. During a twenty-first-century simulation driven by representative concentration pathway 8.5 (RCP8.5) forcing, the SMB decreases from 372 ± 100 Gt yr−1 in 1980–99 to −78 ± 143 Gt yr−1 in 2080–99. The 2080–99 near-surface temperatures over the GIS increase by 4.7 K (annual mean) with respect to 1980–99, only 1.3 times the global increase (+3.7 K). Snowfall increases by 18%, while surface melt doubles. The ablation area increases from 9% of the GIS in 1980–99 to 28% in 2080–99. Over the ablation areas, summer downward longwave radiation and turbulent fluxes increase, while incoming shortwave radiation decreases owing to increased cloud cover. The reduction in GIS-averaged July albedo from 0.78 in 1980–99 to 0.75 in 2080–99 increases the absorbed solar radiation in this month by 12%. Summer warming is strongest in the north and east of Greenland owing to reduced sea ice cover. In the ablation area, summer temperature increases are smaller due to frequent periods of surface melt.

Full access
Miren Vizcaíno, William H. Lipscomb, William J. Sacks, Jan H. van Angelen, Bert Wouters, and Michiel R. van den Broeke

Abstract

The modeling of the surface mass balance (SMB) of the Greenland Ice Sheet (GIS) requires high-resolution models in order to capture the observed large gradients in the steep marginal areas. Until now, global climate models have not been considered suitable to model ice sheet SMB owing to model biases and insufficient resolution. This study analyzes the GIS SMB simulated for the period 1850–2005 by the Community Earth System Model (CESM), which includes a new ice sheet component with multiple elevation classes for SMB calculations. The model is evaluated against observational data and output from the regional model Regional Atmospheric Climate Model version 2 (RACMO2). Because of a lack of major climate biases, a sophisticated calculation of snow processes (including surface albedo evolution) and an adequate downscaling technique, CESM is able to realistically simulate GIS surface climate and SMB. CESM SMB agrees reasonably well with in situ data from 475 locations (r = 0.80) and output from RACMO2 (r = 0.79). The simulated mean SMB for 1960–2005 is 359 ± 120 Gt yr−1 in the range of estimates from regional climate models. The simulated seasonal mass variability is comparable with mass observations from the Gravity Recovery and Climate Experiment (GRACE), with synchronous annual maximum (May) and minimum (August–September) and similar amplitudes of the seasonal cycle. CESM is able to simulate the bands of precipitation maxima along the southeast and northwest margins, but absolute precipitation rates are underestimated along the southeastern margin and overestimated in the high interior. The model correctly simulates the major ablation areas. Total refreezing represents 35% of the available liquid water (the sum of rain and melt).

Full access
Samuel Levis, Gordon B. Bonan, Erik Kluzek, Peter E. Thornton, Andrew Jones, William J. Sacks, and Christopher J. Kucharik

Abstract

The Community Earth System Model, version 1 (CESM1) is evaluated with two coupled atmosphere–land simulations. The CTRL (control) simulation represents crops as unmanaged grasses, while CROP represents a crop managed simulation that includes special algorithms for midlatitude corn, soybean, and cereal phenology and carbon allocation. CROP has a more realistic leaf area index (LAI) for crops than CTRL. CROP reduces winter LAI and represents the spring planting and fall harvest explicitly. At the peak of the growing season, CROP simulates higher crop LAI. These changes generally reduce the latent heat flux but not around peak LAI (late spring/early summer). In midwestern North America, where corn, soybean, and cereal abundance is high, simulated peak summer precipitation declines and agrees better with observations, particularly when crops emerge late as is found from a late planting sensitivity simulation (LateP). Differences between the CROP and LateP simulations underscore the importance of simulating crop planting and harvest dates correctly. On the biogeochemistry side, the annual cycle of net ecosystem exchange (NEE) also improves in CROP relative to Ameriflux site observations. For a global perspective, the authors diagnose annual cycles of CO2 from the simulated NEE (CO2 is not prognostic in these simulations) and compare against representative GLOBALVIEW monitoring stations. The authors find an increased (thus also improved) amplitude of the annual cycle in CROP. These regional and global-scale refinements from improvements in the simulated plant phenology have promising implications for the development of the CESM and particularly for simulations with prognostic atmospheric CO2.

Full access
William H. Lipscomb, Jeremy G. Fyke, Miren Vizcaíno, William J. Sacks, Jon Wolfe, Mariana Vertenstein, Anthony Craig, Erik Kluzek, and David M. Lawrence

Abstract

The Glimmer Community Ice Sheet Model (Glimmer-CISM) has been implemented in the Community Earth System Model (CESM). Glimmer-CISM is forced by a surface mass balance (SMB) computed in multiple elevation classes in the CESM land model and downscaled to the ice sheet grid. Ice sheet evolution is governed by the shallow-ice approximation with thermomechanical coupling and basal sliding. This paper describes and evaluates the initial model implementation for the Greenland Ice Sheet (GIS). The ice sheet model was spun up using the SMB from a coupled CESM simulation with preindustrial forcing. The model's sensitivity to three key ice sheet parameters was explored by running an ensemble of 100 GIS simulations to quasi equilibrium and ranking each simulation based on multiple diagnostics. With reasonable parameter choices, the steady-state GIS geometry is broadly consistent with observations. The simulated ice sheet is too thick and extensive, however, in some marginal regions where the SMB is anomalously positive. The top-ranking simulations were continued using surface forcing from CESM simulations of the twentieth century (1850–2005) and twenty-first century (2005–2100, with RCP8.5 forcing). In these simulations the GIS loses mass, with a resulting global-mean sea level rise of 16 mm during 1850–2005 and 60 mm during 2005–2100. This mass loss is caused mainly by increased ablation near the ice sheet margin, offset by reduced ice discharge to the ocean. Projected sea level rise is sensitive to the initial geometry, showing the importance of realistic geometry in the spun-up ice sheet.

Full access
Jielun Sun, Steven P. Oncley, Sean P. Burns, Britton B. Stephens, Donald H. Lenschow, Teresa Campos, Russell K. Monson, David S. Schimel, William J. Sacks, Stephan F. J. De Wekker, Chun-Ta Lai, Brian Lamb, Dennis Ojima, Patrick Z. Ellsworth, Leonel S. L. Sternberg, Sharon Zhong, Craig Clements, David J. P. Moore, Dean E. Anderson, Andrew S. Watt, Jia Hu, Mark Tschudi, Steven Aulenbach, Eugene Allwine, and Teresa Coons

A significant fraction of Earth consists of mountainous terrain. However, the question of how to monitor the surface–atmosphere carbon exchange over complex terrain has not been fully explored. This article reports on studies by a team of investigators from U.S. universities and research institutes who carried out a multiscale and multidisciplinary field and modeling investigation of the CO2 exchange between ecosystems and the atmosphere and of CO2 transport over complex mountainous terrain in the Rocky Mountain region of Colorado. The goals of the field campaign, which included ground and airborne in situ and remote-sensing measurements, were to characterize unique features of the local CO2 exchange and to find effective methods to measure regional ecosystem–atmosphere CO2 exchange over complex terrain. The modeling effort included atmospheric and ecological numerical modeling and data assimilation to investigate regional CO2 transport and biological processes involved in ecosystem–atmosphere carbon exchange. In this report, we document our approaches, demonstrate some preliminary results, and discuss principal patterns and conclusions concerning ecosystem–atmosphere carbon exchange over complex terrain and its relation to past studies that have considered these processes over much simpler terrain.

Full access