Search Results

You are looking at 1 - 10 of 23 items for

  • Author or Editor: Xiang Li x
  • All content x
Clear All Modify Search
Liudan Ding, Tim Li, Baoqiang Xiang, and Melinda Peng

Abstract

Hurricane Sandy (2012) experienced an unusual westward turning and made landfall in New Jersey after its northward movement over the Atlantic Ocean. The landfall caused severe casualties and great economic losses. The westward turning took place in the midlatitude Atlantic where the climatological mean wind is eastward. The cause of this unusual westward track is investigated through both observational analysis and model simulations. The observational analysis indicates that the hurricane steering flow was primarily controlled by atmospheric intraseasonal oscillation (ISO), which was characterized by a pair of anticyclonic and cyclonic circulation systems. The anticyclone to the north was part of a global wave train forced by convection over the tropical Indian Ocean through Rossby wave energy dispersion, and the cyclone to the south originated from the tropical Atlantic through northward propagation. Hindcast experiments using a global coupled model show that the model is able to predict the observed circulation pattern as well as the westward steering flow 6 days prior to Sandy’s landfall. Sensitivity experiments with different initial dates confirm the important role of the ISO in establishing the westward steering flow in the midlatitude Atlantic. Thus the successful numerical model experiments suggest a potential for extended-range dynamical tropical cyclone track predictions.

Full access
Hui Zhou, Dongliang Yuan, Lina Yang, Xiang Li, and William Dewar

Abstract

The meridional geostrophic transport (MGT) in the interior tropical North Pacific Ocean is estimated based on global ocean heat and salt content data. The decadal variations of the zonally and vertically integrated MGT in the tropical North Pacific Ocean are found to precede the Pacific decadal oscillation (PDO) by 1–3 years. The dynamics of the MGT are analyzed based on Sverdrup theory. It is found that the total meridional transport variability (MGT plus Ekman) is dominated by the MGT variability having positive correlations with the PDO index. The Sverdrup transports differ from the total meridional transport significantly and have insignificant correlations with PDO index, suggesting that the MGT variability is not controlled by the Sverdrup dynamics. In comparison, the simulated meridional transport variability in the models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and the Ocean General Circulation Model for the Earth Simulator are dominated by the Sverdrup transports, having insignificant correlations with the simulated PDO indices. The comparison suggests that the non-Sverdrup component in the MGT is important for the predictability of PDO and that significant deficiencies exist in these models in simulating a realistic structure of the tropical ocean gyre variability and predicting the decadal climate variations associated with it.

Full access
Xiang Li, Sundar A. Christopher, Joyce Chou, and Ronald M. Welch

Abstract

Using a new angular distribution model (ADM) for smoke aerosols, the instantaneous top-of-atmosphere (TOA) shortwave aerosol radiative forcing (SWARF) is calculated for selected days over biomass-burning regions in South America. The visible and infrared scanner data are used to detect smoke aerosols and the Clouds and the Earth’s Radiant Energy System (CERES) scanner data from the Tropical Rainfall Measuring Mission are used to obtain the broadband radiances. First, the ADM for smoke aerosols is calculated over land surfaces using a discrete-ordinate radiative transfer model. The instantaneous TOA shortwave (SW) fluxes are estimated using the new smoke ADM and are compared with the SW fluxes from the CERES product. The rms error between the CERES SW fluxes and fluxes using the smoke ADM is 13 W m−2. The TOA SWARFs per unit optical thickness for the six surface types range from −29 to −57 W m−2, showing that smoke aerosols have a distinct cooling effect. The new smoke ADM developed as part of this study could be used to estimate radiative impact of biomass-burning aerosols.

Full access
Ya Yang, Xiang Li, Jing Wang, and Dongliang Yuan

Abstract

The North Equatorial Subsurface Current (NESC) is a subthermocline ocean current uncovered recently in the tropical Pacific Ocean, flowing westward below the North Equatorial Countercurrent. In this study, the dynamics of the seasonal cycle of this current are studied using historical shipboard acoustic Doppler current profiler measurements and Argo absolute geostrophic currents. Both data show a westward current at the depths of 200–1000 m between 4° and 6°N, with a typical core speed of about 5 and 2 cm s−1, respectively. The subsurface current originates in the eastern Pacific, with its core descending to deeper isopycnal surfaces and moving to the equator as it flows westward. The zonal velocity of the NESC shows pronounced seasonal variability, with the annual-cycle harmonics of vertical isothermal displacement and zonal velocity presenting characters of vertically propagating baroclinic Rossby waves. A simple analytical Rossby wave model is employed to simulate the propagation of the seasonal variations of the westward zonal currents successfully, which is the basis for exploring the wind forcing dynamics. The results suggest that the wind curl forcing in the central-eastern basin between 170° and 140°W associated with the meridional movement of the intertropical convergence zone dominates the NESC seasonal variability in the western Pacific, with the winds west of 170°W and east of 140°W playing a minor role in the forcing.

Restricted access
Guoyu Ren, Hongbin Liu, Ziying Chu, Li Zhang, Xiang Li, Weijing Li, Yu Chen, Ge Gao, and Yan Zhang

Abstract

Middle and eastern routes of the South–North Water Diversion Project (SNWDP) of China, which are approximately located within the area 28°–42°N and 110°–122°E, are being constructed. This paper investigates the past climatic variations on various time scales using instrumental and proxy data. It is found that annual mean surface air temperature has increased significantly during the past 50–100 years, and winter and spring temperatures in the northern part of the region have undergone the most significant changes. A much more significant increase occurs for annual mean minimum temperature and extreme low temperature than for annual mean maximum temperature and extreme high temperature. No significant trend in annual precipitation is found for the region as a whole for the last 50 and 100 years, although obvious decadal and spatial variation is detectable. A seesaw pattern of annual and summer precipitation variability between the north and the south of the region is evident. Over the last 100 years, the Haihe River basin has witnessed a significant negative trend of annual precipitation, but no similar trend is detected for the Yangtze and Huaihe River basins. Pan evaporation has significantly decreased since the mid-1960s in the region in spite of the fact that the trend appears to have ended in the early 1990s. The negative trend of pan evaporation is very significant in the plain area between the Yangtze and Yellow Rivers. There was a notable series of dry intervals lasting decades in the north of the region. The northern drought of the past 30 years is not the most severe in view of the past 500 years; however, the southern drought during the period from the 1960s to the 1980s may have been unprecedented. The dryness–wetness index (DWI) shows significant oscillations with periodicities of 9.5 and 20 years in the south and 10.5 and 25 years in the north. Longer periodicities in the DWI series include 160–170- and 70–80-yr oscillations in the north, and 100–150-yr oscillations in the south. The observed climate change could have implications for the construction and management of the SNWDP. The official approval and start of the hydro project was catalyzed by the severe multiyear drought of 1997–2003 in the north, and the operation and management of the project in the future will also be influenced by climate change—in particular by precipitation variability. This paper provides a preliminary discussion of the potential implications of observed climate change for the SNWDP.

Full access
Guoyu Ren, Hongbin Liu, Ziying Chu, Li Zhang, Xiang Li, Weijing Li, Yu Chen, Ge Gao, and Yan Zhang
Full access
Xuejin Wang, Baoqing Zhang, Feng Li, Xiang Li, Xuliang Li, Yibo Wang, Rui Shao, Jie Tian, and Chansheng He

Abstract

From 1998 to the present, the Chinese government has implemented numerous large-scale ecological programs to restore ecosystems and improve environmental protection in the agro-pastoral ecotone of northern China (APENC). However, it remains unclear how vegetation restoration modulates intraregional moisture cycles and changes regional water balance. To fill this gap, we first investigated the variation in precipitation (P) from the China Meteorological Forcing Dataset and evapotranspiration (ET) estimated using the Priestley–Taylor Jet Propulsion Laboratory model under two scenarios: dynamic vegetation (DV) and no dynamic vegetation (no-DV). We then used the dynamic recycling model to analyze the changes in precipitation recycling ratio (PRR). Finally, we examined how vegetation restoration modulates intraregional moisture recycling to change the regional water cycle in APENC. Results indicate P increased at an average rate of 4.42 mm yr−2 from 1995 to 2015. ET with DV exhibited a significant increase at a rate of 1.57, 3.58, 1.53, and 1.84 mm yr−2 in the four subregions, respectively, compared with no-DV, and the annual mean PRR values were 10.15%, 9.30%, 11.01%, and 12.76% in the four subregions, and significant increasing trends were found in the APENC during 1995–2015. Further analysis of regional moisture recycling shows that vegetation restoration does not increase local P directly, but has an indirect effect by enhancing moisture recycling process to produce more P by increasing PRR. Our findings show that large-scale ecological restoration programs have a positive effect on local moisture cycle and precipitation.

Restricted access
Cheng-Dong Xu, Jin-Feng Wang, Mao-Gui Hu, and Qing-Xiang Li

Abstract

A probabilistic spatiotemporal approach based on a spatial regression test (SRT-PS) is proposed for the quality control of climate data. It provides a quantitative probability that represents the uncertainty in each temperature observation. The assumption of SRT-PS is that there might be large uncertainty in the station record if there is a large residual difference between the record estimated in the spatial regression test and the true station record. The result of SRT-PS is expressed as a confidence probability ranging from 0 to 1, where a value closer to 1 indicates less uncertainty. The potential of SRT-PS to estimate quantitatively the uncertainty in temperature observations was demonstrated using an annual temperature dataset for China for the period 1971–2000 with seeded errors. SRT-PS was also applied to assess a real dataset, and was compared with two traditional quality control approaches: biweight mean and biweight standard deviation and SRT. The study provides a new approach to assess quantitatively the uncertainty in temperature observations at meteorological stations.

Full access
Xiang-Yu Li, Axel Brandenburg, Gunilla Svensson, Nils E. L. Haugen, Bernhard Mehlig, and Igor Rogachevskii

Abstract

We investigate the effect of turbulence on the combined condensational and collisional growth of cloud droplets by means of high-resolution direct numerical simulations of turbulence and a superparticle approximation for droplet dynamics and collisions. The droplets are subject to turbulence as well as gravity, and their collision and coalescence efficiencies are taken to be unity. We solve the thermodynamic equations governing temperature, water vapor mixing ratio, and the resulting supersaturation fields together with the Navier–Stokes equation. We find that the droplet size distribution broadens with increasing Reynolds number and/or mean energy dissipation rate. Turbulence affects the condensational growth directly through supersaturation fluctuations, and it influences collisional growth indirectly through condensation. Our simulations show for the first time that, in the absence of the mean updraft cooling, supersaturation-fluctuation-induced broadening of droplet size distributions enhances the collisional growth. This is contrary to classical (nonturbulent) condensational growth, which leads to a growing mean droplet size, but a narrower droplet size distribution. Our findings, instead, show that condensational growth facilitates collisional growth by broadening the size distribution in the tails at an early stage of rain formation. With increasing Reynolds numbers, evaporation becomes stronger. This counteracts the broadening effect due to condensation at late stages of rain formation. Our conclusions are consistent with results of laboratory experiments and field observations, and show that supersaturation fluctuations are important for precipitation.

Free access
Xian-Xiang Li, Dennis Y. C. Leung, Chun-Ho Liu, and K. M. Lam

Abstract

The flow characteristics inside urban street canyons were studied in a laboratory water channel. The approaching flow direction was horizontal and perpendicular to the street axis. The street width was adjusted to form street canyons of aspect ratios 0.5, 1.0, and 2.0. The velocity field and turbulent intensity were measured with a laser Doppler anemometer at various locations within the street canyons, which were used to elucidate the flow pattern inside the street canyons. It was found that the previous numerical modeling results are in good agreement with the current experimental results at most locations. For the street canyon of aspect ratio 0.5, which belongs to the wake interference flow regime, the mean and fluctuating velocity components were more difficult to measure as compared with the other two cases because of its more complicated flow pattern. Some guidelines for numerical modeling were developed based on the measurement results. The data presented in this paper can also be used as a comprehensive database for the validation of numerical models.

Full access