Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Xiao Lu x
  • Refine by Access: All Content x
Clear All Modify Search
Wen-Xiao Yu
,
Fukai Liu
,
Yiyong Luo
,
Jian Lu
, and
Fengfei Song

Abstract

Climate models project a significant intensification of the sea surface temperature (SST) seasonal cycle over the subpolar North Pacific due to global warming, with the shallower mixed layer widely recognized as the dominant factor. However, employing slab ocean experiments with only ocean-atmosphere thermal coupling, we find a substantial contribution from changes in surface heat flux to this seasonal cycle intensification. In particular, the stronger Newtonian cooling effect in winter acts as a more potent damping than in summer. This differential damping inhibits the warming in colder seasons, significantly contributing to the intensified SST seasonal cycle in the subpolar North Pacific.

In addition, consistent phase shifts in the North Pacific are identified across CMIP6 models. In the northwest North Pacific, a phase advance is associated with anomalous heating in early spring, driven by enhanced warm atmospheric advection from lower latitudes and sea ice melting in marginal seas. In contrast, the southeast North Pacific exhibits a phase delay attributed to the anomalous cooling in spring relative to autumn. This cooling is due to weakened trade winds and increased presence of high clouds. The former leads to stronger evaporative cooling in spring, while the latter impedes shortwave radiation from reaching the ocean.

Restricted access
Xiang Xiao
,
Yangyang Xu
,
Xiaorui Zhang
,
Fan Wang
,
Xiao Lu
,
Zongwei Cai
,
Guy Brasseur
, and
Meng Gao

Abstract

Climate change and air pollution are two intimately interlinked global concerns. The frequency, intensity, and duration of heat waves are projected to increase globally under future climate change. A growing body of evidence indicates that health risks associated with the joint exposure to heat waves and air pollution can be greater than that due to individual factors. However, the cooccurrences of heat and air pollution extremes in China remain less explored in the observational records. Here we investigate the spatial pattern and temporal trend of frequency, intensity, and duration of cooccurrences of heat and air pollution extremes using China’s nationwide observations of hourly PM2.5 and O3, and the ERA5 reanalysis dataset over 2013–20. We identify a significant increase in the frequency of cooccurrence of wet-bulb temperature (Tw ) and O3 exceedances (beyond a certain predefined threshold), mainly in the Beijing–Tianjin–Hebei (BTH) region (up by 4.7 days decade−1) and the Yangtze River delta (YRD). In addition, we find that the increasing rate (compared to the average levels during the study period) of joint exceedance is larger than the rate of Tw and O3 itself. For example, Tw and O3 coextremes increased by 7.0% in BTH, higher than the percentage increase of each at 0.9% and 5.5%, respectively. We identify same amplification for YRD. This ongoing upward trend in the joint occurrence of heat and O3 extremes should be recognized as an emerging environmental issue in China, given the potentially larger compounding impact to public health.

Full access
Chang-Jiang Zhang
,
Jin-Fang Qian
,
Lei-Ming Ma
, and
Xiao-Qin Lu

Abstract

An objective technique is presented to estimate tropical cyclone intensity using the relevance vector machine (RVM) and deviation angle distribution inhomogeneity (DADI) based on infrared satellite images of the northwest Pacific Ocean basin from China’s FY-2C geostationary satellite. Using this technique, structures of a deviation-angle gradient co-occurrence matrix, which include 15 statistical parameters nonlinearly related to tropical cyclone intensity, were derived from infrared satellite imagery. RVM was then used to relate these statistical parameters to tropical cyclone intensity. Twenty-two tropical cyclones occurred in the northwest Pacific during 2005–09 and were selected to verify the performance of the proposed technique. The results show that, in comparison with the traditional linear regression method, the proposed technique can significantly improve the accuracy of tropical cyclone intensity estimation. The average absolute error of intensity estimation using the linear regression method is between 15 and 29 m s−1. Compared to the linear regression method, the average absolute error of the intensity estimation using RVM is between 3 and 10 m s−1.

Full access
Jinghua Chen
,
Xiaoqing Wu
,
Yan Yin
,
Chunsong Lu
,
Hui Xiao
,
Qian Huang
, and
Liping Deng

ABSTRACT

The influence of surface heat fluxes on the generation and development of cloud and precipitation and its relative importance to the large-scale circulation patterns are investigated via cloud-resolving model (CRM) simulations over the Tibetan Plateau (TP) during boreal summer. Over the lowland (e.g., along the middle and lower reaches of the Yangtze River), the dynamical and thermal properties of the atmosphere take more responsibility than the surface heat fluxes for the triggering of heavy rainfall events. However, the surface thermal driving force is a necessary criterion for the triggering of heavy rainfall in the eastern and western TP (ETP and WTP). Strong surface heat fluxes can trigger shallow convections in the TP. Furthermore, moisture that is mainly transported from the southern tropical ocean has a greater influence on the heavy rainfall events of the WTP than those of the ETP. Cloud microphysical processes are substantially less active and heavy rainfall cannot be produced when surface heat fluxes are weakened by half in magnitude over the TP. In addition, surface heating effects are largely responsible for the high occurrence frequency of convection during the afternoon, and the cloud tops of convective systems show a positive relationship with the intensity of surface heat fluxes.

Full access
Xiaoxiong Lu
,
Qinglan Li
,
Wei Zhao
,
Aiguo Xiao
,
Guangxin Li
, and
Zifeng Yu

Abstract

Based on daily meteorological observation data in South China (SC) from 1967 to 2018, the spatiotemporal characteristics of the precipitation in SC over the past 52 years were studied. Only 8% of the stations showed a significant increase in annual rainfall, and there was no significant negative trend at any weather stations at a confidence level of 90%. Monthly rainfall showed the most significant decreasing and increasing trends in April and November, respectively. During the entire flooding season from April to September, the monthly rainfall at the weather stations in the coastal areas showed almost no significant change. The annual rainfall gradually decreased toward the inland area with the central and coastal areas of Guangdong Province as the high-value rainfall center. By using the empirical orthogonal function decomposition method, it was found that the two main monthly rainfall modes had strong annual signals. The first modal spatial distribution was basically consistent with the average annual rainfall distribution. Based on the environmental background analysis, it was found that during the flooding season the main water vapor to SC was transported by the East Asian summer monsoon and the Indian summer monsoon. In late autumn and winter, the prevailing wind from northeastern China could not bring much water vapor to SC and led to little precipitation in these two seasons. The spatial distribution of precipitation in SC during summer was more consistent with the moisture flux divergence distribution of the bottom layer from 925 to 1000 hPa rather than that of the layer from 700 to 1000 hPa.

Open access
Wenbo Lu
,
Chun Zhou
,
Wei Zhao
,
Cunjie Zhang
,
Tao Geng
, and
Xin Xiao

Abstract

At 26.5°N in the North Atlantic, a continuous transbasin observational array has been established since 2004 to detect the strength of the Atlantic meridional overturning circulation. The observational record shows that the subtropical Atlantic meridional overturning circulation has weakened by 2.5 ± 1.5 Sv (as mean ± 95% interval; 1 Sv ≡ 106 m3 s−1) since 2008 compared to the initial 4-yr average. Strengthening of the upper southward geostrophic transport (with a 2.6 ± 1.6 Sv southward increase) derived from thermal wind dominates this Atlantic meridional overturning circulation decline. We decompose the geostrophic transport into its temperature and salinity components to compare their contributions to the transport variability. The contributions of temperature and salinity components to the southward geostrophic transport strengthening are 1.0 ± 2.5 and 1.6 ± 1.3 Sv, respectively. The variation of salinity component is significant at the 95% confidence level, while the temperature component’s variation is not. This result highlights the vital role that salinity plays in the subtropical Atlantic meridional overturning circulation variability, which has been overlooked in previous studies. We further analyze the geostrophic transport variations and their temperature and salinity components arising from different water masses, which shows that a warming signal in Labrador Sea Water and a freshening signal in Nordic Sea Water are two prominent sources of the geostrophic transport increase. Comparison of the temperature and salinity records of the 26.5°N array with the upstream records from repeated hydrographic sections across the Labrador Sea suggests that these thermohaline signals may be exported from the subpolar Atlantic via the deep western boundary current.

Free access
Yuan-Zheng Lu
,
Xian-Rong Cen
,
Shuang-Xi Guo
,
Ling Qu
,
Peng-Qi Huang
,
Xiao-Dong Shang
, and
Sheng-Qi Zhou

Abstract

The nominal spatial distribution of diapycnal mixing in the South China Sea (SCS) is obtained with Thorpe-scale analysis from 2004 to 2020. The inferred dissipation rate ε and diapycnal diffusivity K z between 100 and 1500 m indicated that the strongest mixing occurred in the Luzon Strait and Dongsha Plateau regions, with ε ~ 3.0 × 10−8 W kg−1 (ε max = 5.3 × 10−6 W kg−1) and K z ~ 3.5 × 10−4 m2 s−1 (K zmax = 4.2 × 10−2 m2 s−1). The weakest mixing occurred in the thermocline of the central basin, with ε ~ 6.2 × 10−10 W kg−1 and K z ~ 3.7 × 10−6 m2 s−1. The ε and K z in the continental slope indicated that the mixing in the northern part [O(10−8) W kg−1 and O(10−4) m2 s−1, respectively] was comparatively stronger than that in the Xisha and Nansha regions [O(10−9) W kg−1 and O(10−5) m2 s−1, respectively]. The K z in the continental slope region (200–2000 m) decayed at a closed rate from the ocean bottom to the main thermocline when the measured depth D was normalized by the ocean depth H as D/H, whether in the shallow or deep oceans. The diapycnal diffusivity was parameterized as K z = 3.3 × 10−4[1 + (1 − D/H)/0.22]−2 − 6.0 × 10−6 m2 s−1. The vertically integrated energy dissipation was nominally 15.8 mW m−2 for all data and 25.6 mW m−2 for data at stations H < 2000 m. This was about one order of magnitude higher than that in the open oceans (3.0–3.3 mW m−2), which confirmed the active mixing state in the SCS.

Full access
Lu Su
,
Qian Cao
,
Mu Xiao
,
David M. Mocko
,
Michael Barlage
,
Dongyue Li
,
Christa D. Peters-Lidard
, and
Dennis P. Lettenmaier

Abstract

We examine the drought variability over the conterminous United States (CONUS) for 1915–2018 using the Noah-MP land surface model. We examine different model options on drought reconstruction, including optional representation of groundwater and dynamic vegetation phenology. Over our 104-yr reconstruction period, we identify 12 great droughts that each covered at least 36% of CONUS and lasted for at least 5 months. The great droughts tend to have smaller areas when groundwater and/or dynamic vegetation are included in the model configuration. We detect a small decreasing trend in dry area coverage over CONUS in all configurations. We identify 45 major droughts in the baseline (with a dry area coverage greater than 23.6% of CONUS) that are, on average, somewhat less severe than great droughts. We find that representation of groundwater tends to increase drought duration for both great and major droughts, primarily by leading to earlier drought onset (some due to short-lived recovery from a previous drought) or later demise (groundwater anomalies lag precipitation anomalies). In contrast, representation of dynamic vegetation tends to shorten major droughts duration, primarily due to earlier drought demise (closed stoma or dead vegetation reduces ET loss during droughts). On a regional basis, the U.S. Southwest (Southeast) has the longest (shortest) major drought durations. Consistent with earlier work, dry area coverage in all subregions except the Southwest has decreased. The effects of groundwater and dynamic vegetation vary regionally due to differences in groundwater depths (hence connectivity with the surface) and vegetation types.

Full access
Zhiyong Meng
,
Xuefeng Meng
,
Chenggang Wang
,
Yipeng Huang
,
Shuhao Zhang
,
Hongjun Liu
,
Murong Zhang
,
Yijing Liu
,
Hao Huang
,
Lijuan Su
,
Quxin Cui
,
Feng Lu
,
Kun Zhao
,
Lei Zhu
,
Li Wang
,
Zhihua Zhou
,
Linchun Liu
,
Xuefeng Ma
,
Jiutao Shan
,
Yao Xiao
,
Daoru Zhu
,
Zhengwei Yang
,
Xucheng Zheng
,
Fan Bo
,
Lanqiang Bai
,
Xiaojuan Yao
,
Yonggang Sun
,
Manyun Lin
,
Zimeng Zheng
,
Liao Zhou
,
Xuelei Wang
,
Ke Liu
,
Luyi Chen
,
Lebao Yao
,
Ming Guan
,
Weikang Kong
,
Shaoyang Sun
,
Jiaxin Wang
,
Yikai Wu
,
Yaqi Qin
,
Xiaoying Jiang
,
Xiang Pan
,
Mufei Wang
,
Changan Zhang
,
Yanjun Tuo
,
Hanchao Li
,
Hui Li
,
Lixia Shi
,
Xiaohong Fang
,
Feng Zhu
,
Xin Sun
,
Jingbo Yun
,
Shiyun Liu
,
Huiqing Wang
,
Yawen Yang
,
Jingyi Wen
,
Peiyu Wang
,
Lanbo Liu
,
Nan Ren
,
Xiufeng Wu
,
Zhengyue Zhang
,
Jianyu Pei
,
Zhi Yang
, and
Cheng Xia

Abstract

The heterogeneous land surface spanning the Yellow River irrigated oasis and the adjacent Kubuqi and Ulan Buh Desert (Hetao area) in Inner Mongolia, China, has been noted to frequently generate planetary boundary layer convergence line (BLCL), providing an important source of low-level lifting for convection initiation (CI). As the first field experiment to collect comprehensive observations of vegetation-contrast-resulting thermal circulations that consistently generate BLCLs and lead to CI, the DEsert-oasis COnvergence line and Deep convection Experiment (DECODE) was conducted from 5 July to 9 August 2022, in the Hetao area. Two oasis and four desert observation sites were set up in the region that exhibits the highest frequency of BLCL and CI occurrences, equipped with a suite of advanced instruments probing land-atmosphere interactions, planetary boundary layer processes, and evolution of BLCLs and their associated CI, including Doppler LiDARs, microwave radiometers, soil temperature and moisture sensors, eddy correlation systems, portable radiosondes, C-band polarimetric Doppler radar, aircraft, and Geostationary High-speed Imager onboard FY-4B satellite. DECODE captured 29 BLCLs (13 with CI), 66 gust fronts, 12 horizontal convective rolls, and one tornado. The observations unveiled full thermal circulations spanning the desert-oasis boundary characterized by a horizontal width of ∼25 km, a convergence height of ∼1 km above ground level (AGL), and divergence from 2 to ∼3.5 km AGL, with vertical wind speeds up to 2 m s1. Future publications stemming from DECODE will delve into a spectrum of scientific inquiries, including but not limited to land surface and boundary layer processes, BLCL dynamics, CI mechanisms, convective organization, predictability, and model evaluation, among others.

Open access