Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Xiaohui Xie x
  • All content x
Clear All Modify Search
Xiaohui Xie and Ming Li

Abstract

Recent mooring observations at a cross-channel section in Chesapeake Bay showed that internal solitary waves regularly appeared during certain phases of a tidal cycle and propagated from the deep channel to the shallow shoal. It was hypothesized that these waves resulted from the nonlinear steepening of internal lee waves generated by lateral currents over channel-shoal topography. In this study numerical modeling is conducted to investigate the interaction between lateral circulation and cross-channel topography and discern the generation mechanism of the internal lee waves. During ebb tides, lateral bottom Ekman forcing drives a counterclockwise (looking into estuary) lateral circulation, with strong currents advecting stratified water over the western flank of the deep channel and producing large isopycnal displacements. When the lateral flow becomes supercritical with respect to mode-2 internal waves, a mode-2 internal lee wave is generated on the flank of the deep channel and subsequently propagates onto the western shoal. When the bottom lateral flow becomes near-critical or supercritical with respect to mode-1 internal waves, the lee wave evolves into an internal hydraulic jump. On the shallow shoal, the lee waves or jumps evolve into internal bores of elevation.

Full access
Xiaohui Xie and Dake Chen

Abstract

Two sets of mooring data were collected at two sites (MA and MB) along a cross-slope section on the northeastern continental slope in the South China Sea (SCS). These data are used to investigate evolution and energy decay of low-mode semidiurnal (M2) internal tides on a subcritical slope with respect to M2. At the deep portion of the slope (~1250 m; MA), the M2 internal tides show upward energy propagation, while vertically standing M2 internal tides are often observed at shallow MB (~845 m). A two-dimensional linear internal tide model with realistic topography and stratification reproduces the observations, suggesting that low-mode M2 internal tides incident on subcritical slopes evolve into vertically propagating internal waves due to topographic scattering, propagate upward to the boundary, and reflect from the sea surface. The reflection point largely depends on the phase between the modal components of the incoming flux. In the near-surface reflection region, two kinds of nonlinear effects are observed to decay energy of the incoming internal tides. One is the resonant parametric subharmonic instability which transfers M2 internal tides to diurnal subharmonics M1 (=M2/2), but the instability is found to mainly depend on the incident waves. The other one is the nonresonant wave–wave interaction, producing two higher-harmonic M4 (=2M2) rays with opposite vertical propagation. A strong westward mean flow is observed in the interacting region, with amplitude comparable to that of the incident waves. This mean flow also appears to be generated by the nonlinear reflection of the M2 internal tides.

Restricted access
Xiaohui Xie, Ming Li, and William C. Boicourt

Abstract

The 2-month-long mooring data were collected in a straight midsection of Chesapeake Bay to document the lateral circulation driven by along-channel winds. Under upestuary winds, the lateral circulation featured a clockwise (looking into estuary) circulation in the surface layer, with lateral Ekman forcing as the dominant generation mechanism. Under downestuary winds, however, the lateral circulation displayed a structure dependent on the Wedderburn number W: a counterclockwise circulation at small W and two counterrotating vortices at large W. The surface lateral velocity was phase locked to the along-channel wind speed. Analysis of the streamwise vorticity equation showed that the strength and structure of the lateral circulation in this stratified estuary were largely determined by the competition between the tilting of planetary vorticity by along-channel currents and lateral baroclinic forcing due to sloping isopycnals. Under strong, downestuary winds, the lateral baroclinic forcing offset or reversed the tilting of planetary vorticity on the western half of the estuarine channel, resulting in two counterrotating lateral circulation cells. A bottom lateral flow was observed in the deep channel and appeared to be generated by lateral Ekman forcing on the along-channel currents.

Full access
Xiaohui Xie, Ming Li, Malcolm Scully, and William C. Boicourt

Abstract

Internal solitary waves are commonly observed in the coastal ocean where they are known to contribute to mass transport and turbulent mixing. While these waves are often generated by cross-isobath barotropic tidal currents, novel observations are presented suggesting that internal solitary waves result from along-isobath tidal flows over channel-shoal bathymetry. Mooring and ship-based velocity, temperature, and salinity data were collected over a cross-channel section in a stratified estuary. The data show that Ekman forcing on along-channel tidal currents drives lateral circulation, which interacts with the stratified water over the deep channel to generate a supercritical mode-2 internal lee wave. This lee wave propagates onto the shallow shoal and evolves into a group of internal solitary waves of elevation due to nonlinear steepening. These observations highlight the potential importance of three-dimensionality on the conversion of tidal flow to internal waves in the rotating ocean.

Full access