Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Xiaomei Huang x
  • Refine by Access: All Content x
Clear All Modify Search
Xingwen Jiang
,
Jianchuan Shu
,
Xin Wang
,
Xiaomei Huang
, and
Qing Wu

Abstract

Floods and droughts hit southwest China (SWC) frequently, especially over the last decade. In this study, the dominant modes of summer rainfall anomalies over SWC on the interannual time scale and the possible causes are investigated. Interannual variability of the summer rainfall over SWC has two dominant modes. The first mode features rainfall increases over most of SWC except central Sichuan, and the second mode exhibits wet conditions in the north but dry conditions in the south. The suppressed convection over the Philippine Sea affects the first mode by inducing anomalous anticyclones over the western North Pacific and to the south of the Tibetan Plateau, which transport more water vapor to eastern Tibet and eastern SWC and hence favor above-normal rainfall there. The enhanced convection over the western Maritime Continent could generate similar atmospheric circulation anomalies associated with the suppressed convection over the Philippine Sea but with a northward shift, resulting in significant increases in rainfall over northeastern SWC but weak decreases in rainfall over southeastern SWC. As a result, the rainfall anomalies over SWC tend to be different between El Niño–Southern Oscillation decaying and developing phases because their different impacts on the convection over the Philippine Sea and the western Maritime Continent. Meanwhile, the sea surface temperature in the tropical southeastern Indian Ocean also plays an important role in variability of the rainfall over SWC because of its significant impact on the convection over the western Maritime Continent.

Full access