Search Results

You are looking at 1 - 10 of 36 items for

  • Author or Editor: Xiaosong Yang x
  • Refine by Access: All Content x
Clear All Modify Search
Xiaosong Yang and Timothy DelSole

Abstract

This paper applies a new field significance test to establish the existence and consistency of ENSO teleconnection patterns across models and observations. An ENSO teleconnection pattern is defined as a field of regression coefficients between an index of the tropical Pacific sea surface temperature and a field of variables such as surface air temperature or precipitation. The test is applied to boreal winter and summer in six continents using observations and hindcasts from the Development of a European Multimodel Ensemble System for Seasonal-to-Interannual Prediction (DEMETER) and the ENSEMBLE-based predictions of climate changes and their impacts (ENSEMBLES) projects. This comparison represents one of the most comprehensive and up-to-date assessments of the extent to which ENSO teleconnection patterns exist and can be reproduced by coupled models.

Statistically significant ENSO teleconnection patterns are detected in both observations and models and in all continents and in both winter and summer seasons, except in two cases: 1) Europe (both seasons and variables), and 2) North America (both variables in boreal summer). Despite many ENSO teleconnection patterns being significant, however, the patterns do not necessarily agree between observations and models. The degree of agreement between models and observations is characterized as “robust,” “moderate,” or “low.” Only Australia and South America are found to have robust agreement between ENSO teleconnection patterns, and then only for limited seasons and variables. Although many of our conclusions regarding teleconnection patterns conform to previous studies, there are exceptions, including the fact that the teleconnection for boreal winter precipitation is generally accepted to exist in Africa but in fact has only low agreement with model simulations, while that in Asia is not widely recognized to exist but is found to be significant and in moderate agreement with model teleconnections.

Full access
Timothy DelSole and Xiaosong Yang

Abstract

Regression patterns often are used to diagnose the relation between a field and a climate index, but a significance test for the pattern “as a whole” that accounts for the multiplicity and interdependence of the tests has not been widely available. This paper argues that field significance can be framed as a test of the hypothesis that all regression coefficients vanish in a suitable multivariate regression model. A test for this hypothesis can be derived from the generalized likelihood ratio test. The resulting statistic depends on relevant covariance matrices and accounts for the multiplicity and interdependence of the tests. It also depends only on the canonical correlations between the predictors and predictands, thereby revealing a fundamental connection to canonical correlation analysis. Remarkably, the test statistic is invariant to a reversal of the predictors and predictands, allowing the field significance test to be reduced to a standard univariate hypothesis test. In practice, the test cannot be applied when the number of coefficients exceeds the sample size, reflecting the fact that testing more hypotheses than data is ill conceived. To formulate a proper significance test, the data are represented by a small number of principal components, with the number chosen based on cross-validation experiments. However, instead of selecting the model that minimizes the cross-validated mean square error, a confidence interval for the cross-validated error is estimated and the most parsimonious model whose error is within the confidence interval of the minimum error is chosen. This procedure avoids selecting complex models whose error is close to much simpler models. The procedure is applied to diagnose long-term trends in annual average sea surface temperature and boreal winter 300-hPa zonal wind. In both cases a statistically significant 50-yr trend pattern is extracted. The resulting spatial filter can be used to monitor the evolution of the regression pattern without temporal filtering.

Full access
Songmiao Fan and Xiaosong Yang

Abstract

The wintertime Arctic temperature (T; surface–400 hPa) decreased from 1979 to 1997 and increased rapidly from 1998 to 2012, in contrast to the global mean surface air temperature. Here aspects of circulation variability that are associated with these temperature changes are examined using the NCEP–NCAR reanalysis and ERA-Interim products. It is found that the Nordic–Siberia seesaw of meridional winds near 70°N is associated with two-thirds of the variance of the Arctic winter mean T, possibly contributing to the cooling and warming trends. It is suggested here that the seesaw accounts for much of the difference in Arctic amplification between observations and climate models. Growth of sea ice in winter is hindered by southerly winds over the Nordic region (0°–60°E). Through modulation of the wind seesaw, the eastern Atlantic (EA) pattern is found to be significantly associated with Arctic and East Asia winter climate variations. In one phase of the EA pattern, a midlatitude North Atlantic ridge anomaly is associated with a poleward shift of the mean storm track, a weakened eddy-driven jet over Eurasia, and above-normal sea level pressure (SLP) over Siberia, most significantly in the region to the northwest of Lake Baikal. The EA pattern is associated with two-thirds of the variance of winter-average SLP over Siberia.

Full access
Xiaosong Yang and Edmund K. M. Chang

Abstract

A new split-jet index is defined in this study, and composites based on this index show that the split-flow regime is characterized by a cold–warm–cold tripolar temperature anomaly in the South Pacific that extends equatorward from the Southern Hemisphere (SH) high latitudes, while nonsplit flow occurs when the phase of the tripolar temperature anomaly is reversed. Analyses of the heat budget reveal that the temperature anomalies associated with the split/nonsplit flow are mainly forced by mean flow advection instead of local diabatic heating or convergence of eddy heat fluxes. Localized Eliassen–Palm (E–P) flux diagnostics suggest that the zonal wind anomalies are maintained by the eddy vorticity flux anomalies.

These diagnostic results are confirmed by numerical experiments conducted using a stationary wave model forced by observed eddy forcings and diabatic heating anomalies. The model results show that the effects of the vorticity flux dominates over those of the heat flux, which tend to dampen the flow anomalies, and that tropical diabatic heating anomalies are not important in maintaining the split-/nonsplit-flow anomalies.

The organization of high-frequency eddies by the low-frequency split/nonsplit jet is also studied. Two sets of experiments using a linear storm-track model initialized with random initial perturbations superposed upon the split- and nonsplit-jet basic state, respectively, have been conducted. Model results show that the storm-track anomalies that are organized by the split/nonsplit jet are consistent with observed storm-track anomalies, thus demonstrating that the low-frequency split/nonsplit jet acts to organize the high-frequency eddies.

The results of this paper directly establish that there is a two-way reinforcement between eddies and mean flow anomalies in the low-frequency variability of the SH winter split jet.

Full access
Xiaosong Yang, Timothy DelSole, and Hua-Lu Pan

Abstract

This paper examines the extent to which an empirical correction method can improve forecasts of the National Centers for Environmental Prediction (NCEP) operational Global Forecast System. The empirical correction is based on adding a forcing term to the prognostic equations equal to the negative of the climatological tendency errors. The tendency errors are estimated by a least squares method using 6-, 12-, 18-, and 24-h forecast errors. Tests on independent verification data show that the empirical correction significantly reduces temperature biases nearly everywhere at all lead times up to at least 5 days but does not significantly reduce biases in forecast winds and humidity. Decomposing mean-square error into bias and random components reveals that the reduction in total mean-square error arises solely from reduction in bias. Interestingly, the empirical correction increases the random error slightly, but this increase is argued to be an artifact of the change in variance in the forecasts. The empirical correction also is found to reduce the bias more than traditional “after the fact” corrections. The latter result might be a consequence of the very different sample sizes available for estimation, but this difference in sample size is unavoidable in operational situations in which limited calibration data are available for a given forecast model.

Full access
Xiaosong Yang and Edmund K. M. Chang

Abstract

The eddy–zonal flow feedback in the Southern Hemisphere (SH) winter and summer is investigated in this study. The persistence time scale of the leading principal components (PCs) of the zonal-mean zonal flow shows substantial seasonal variation. In the SH summer, the persistence time scale of PC1 is significantly longer than that of PC2, while the persistence time scales of the two PCs are quite similar in the SH winter. A storm-track modeling approach is applied to demonstrate that seasonal variations of eddy–zonal flow feedback for PC1 and PC2 account for the seasonal variations of the persistence time scale. The eddy feedback time scale estimated from a storm-track model simulation and a wave-response model diagnostic shows that PC1 in June–August (JJA) and December–February (DJF), and PC2 in JJA, have significant positive eddy–mean flow feedback, while PC2 in DJF has no positive feedback. The consistency between the persistence and eddy feedback time scales for each PC suggests that the positive feedback increases the persistence of the corresponding PC, with stronger (weaker) positive feedback giving rise to a longer (shorter) persistence time scale.

Eliassen–Palm flux diagnostics have been performed to demonstrate the dynamics governing the positive feedback between eddies and anomalous zonal flow. The mechanism of the positive feedback, for PC1 in JJA and DJF and PC2 in JJA, is as follows: an enhanced baroclinic wave source (heat fluxes) at a low level in the region of positive wind anomalies propagates upward and then equatorward from the wave source, thus giving momentum fluxes that reinforce the wind anomalies. The difference of PC2 between DJF and JJA is because of the zonal asymmetry of the climatological flow in JJA. For PC2 in DJF, wind anomalies reinforce the climatological jet, thus increasing the barotropic shear of the jet flow. The “barotropic governor” plays an important role in suppressing eddy generations for PC2 in DJF and thus inhibiting the positive eddy–zonal flow feedback.

Full access
Yong-Fei Zhang, Mitchell Bushuk, Michael Winton, Bill Hurlin, Xiaosong Yang, Tom Delworth, and Liwei Jia

Abstract

The current GFDL seasonal prediction system achieved retrospective sea ice extent (SIE) skill without direct sea ice data assimilation. Here we develop sea ice data assimilation, shown to be a key source of skill for seasonal sea ice predictions, in GFDL’s next-generation prediction system, the Seamless System for Prediction and Earth System Research (SPEAR). Satellite sea ice concentration (SIC) observations are assimilated into the GFDL Sea Ice Simulator version 2 (SIS2) using the ensemble adjustment Kalman filter (EAKF). Sea ice physics is perturbed to form an ensemble of ice–ocean members with atmospheric forcing from the JRA-55 reanalysis. Assimilation is performed every 5 days from 1982 to 2017 and the evaluation is conducted at pan-Arctic and regional scales over the same period. To mitigate an assimilation overshoot problem and improve the analysis, sea surface temperatures (SSTs) are restored to the daily Optimum Interpolation Sea Surface Temperature version 2 (OISSTv2). The combination of SIC assimilation and SST restoring reduces analysis errors to the observational error level (~10%) from up to 3 times larger than this (~30%) in the free-running model. Sensitivity experiments show that the choice of assimilation localization half-width (190 km) is near optimal and that SIC analysis errors can be further reduced slightly either by reducing the observational error or by increasing the assimilation frequency from every 5 days to daily. A lagged-correlation analysis suggests substantial prediction skill improvements from SIC initialization at lead times of less than 2 months.

Full access
Gan Zhang, Hiroyuki Murakami, Xiaosong Yang, Kirsten L. Findell, Andrew T. Wittenberg, and Liwei Jia

Abstract

Climate models often show errors in simulating and predicting tropical cyclone (TC) activity, but the sources of these errors are not well understood. This study proposes an evaluation framework and analyzes three sets of experiments conducted using a seasonal prediction model developed at the Geophysical Fluid Dynamics Laboratory (GFDL). These experiments apply the nudging technique to the model integration and/or initialization to estimate possible improvements from nearly perfect model conditions. The results suggest that reducing sea surface temperature (SST) errors remains important for better predicting TC activity at long forecast leads—even in a flux-adjusted model with reduced climatological biases. Other error sources also contribute to biases in simulated TC activity, with notable manifestations on regional scales. A novel finding is that the coupling and initialization of the land and atmosphere components can affect seasonal TC prediction skill. Simulated year-to-year variations in June land conditions over North America show a significant lead correlation with the North Atlantic large-scale environment and TC activity. Improved land–atmosphere initialization appears to improve the Atlantic TC predictions initialized in some summer months. For short-lead predictions initialized in June, the potential skill improvements attributable to land–atmosphere initialization might be comparable to those achievable with perfect SST predictions. Overall, this study delineates the SST and non-oceanic error sources in predicting TC activity and highlights avenues for improving predictions. The nudging-based evaluation framework can be applied to other models and help improve predictions of other weather extremes.

Full access
Ángel G. Muñoz, Xiaosong Yang, Gabriel A. Vecchi, Andrew W. Robertson, and William F. Cooke

Abstract

This study proposes an integrated diagnostic framework based on atmospheric circulation regime spatial patterns and frequencies of occurrence to facilitate the identification of model systematic errors across multiple time scales. To illustrate the approach, three sets of 32-yr-long simulations are analyzed for northeastern North America and for the March–May season using the Geophysical Fluid Dynamics Laboratory’s Low Ocean–Atmosphere Resolution (LOAR) and Forecast-Oriented Low Ocean Resolution (FLOR) coupled models; the main difference between these two models is the horizontal resolution of the atmospheric model used. Regime-dependent biases are explored in the light of different atmospheric horizontal resolutions and under different nudging approaches. It is found that both models exhibit a fair representation of the observed circulation regime spatial patterns and frequencies of occurrence, although some biases are present independently of the horizontal resolution or the nudging approach and are associated with a misrepresentation of troughs centered north of the Great Lakes and deep coastal troughs. Moreover, the intraseasonal occurrence of certain model regimes is delayed with respect to observations. On the other hand, interexperiment differences in the mean frequencies of occurrence of the simulated weather types, and their variability across multiple time scales, tend to be negligible. This result suggests that low-resolution models could be of potential use to diagnose and predict physical variables via their simulated weather type characteristics.

Full access
Wei Zhang, Gabriel A. Vecchi, Gabriele Villarini, Hiroyuki Murakami, Richard Gudgel, and Xiaosong Yang

Abstract

This study attempts to improve the prediction of western North Pacific (WNP) and East Asia (EA) landfalling tropical cyclones (TCs) using modes of large-scale climate variability [e.g., the Pacific meridional mode (PMM), the Atlantic meridional mode (AMM), and North Atlantic sea surface temperature anomalies (NASST)] as predictors in a hybrid statistical–dynamical scheme, based on dynamical model forecasts with the GFDL Forecast-Oriented Low Ocean Resolution version of CM2.5 with flux adjustments (FLOR-FA). Overall, the predictive skill of the hybrid model for the WNP TC frequency increases from lead month 5 (initialized in January) to lead month 0 (initialized in June) in terms of correlation coefficient and root-mean-square error (RMSE). The hybrid model outperforms FLOR-FA in predicting WNP TC frequency for all lead months. The predictive skill of the hybrid model improves as the forecast lead time decreases, with values of the correlation coefficient increasing from 0.56 for forecasts initialized in January to 0.69 in June. The hybrid models for landfalling TCs over the entire East Asian (EEA) coast and its three subregions [i.e., southern EA (SEA), middle EA (MEA), and northern EA (NEA)] dramatically outperform FLOR-FA. The correlation coefficient between predicted and observed TC landfall over SEA increases from 0.52 for forecasts initialized in January to 0.64 in June. The hybrid models substantially reduce the RMSE of landfalling TCs over SEA and EEA compared with FLOR-FA. This study suggests that the PMM and NASST/AMM can be used to improve statistical/hybrid forecast models for the frequencies of WNP or East Asia landfalling TCs.

Full access