Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Xiaoyue Hu x
  • Refine by Access: All Content x
Clear All Modify Search
Dongliang Yuan, Xiang Li, Zheng Wang, Yao Li, Jing Wang, Ya Yang, Xiaoyue Hu, Shuwen Tan, Hui Zhou, Adhitya Kusuma Wardana, Dewi Surinati, Adi Purwandana, Mochamad Furqon Azis Ismail, Praditya Avianto, Dirham Dirhamsyah, Zainal Arifin, and Jin-Song von Storch


The Maluku Channel is a major opening of the eastern Indonesian Seas to the western Pacific Ocean, the upper-ocean currents of which have rarely been observed historically. During December 2012–November 2016, long time series of the upper Maluku Channel transport are measured successfully for the first time using subsurface oceanic moorings. The measurements show significant intraseasonal-to-interannual variability of over 14 Sv (1 Sv ≡ 106 m3 s−1) in the upper 300 m or so, with a mean transport of 1.04–1.31 Sv northward and a significant southward interannual change of over 3.5 Sv in the spring of 2014. Coincident with the interannual transport change is the Mindanao Current, choked at the entrance of the Indonesian Seas, which is significantly different from its climatological retroflection in fall–winter. A high-resolution numerical simulation suggests that the variations of the Maluku Channel currents are associated with the shifting of the Mindanao Current retroflection. It is suggested that the shifting of the Mindanao Current outside the Sulawesi Sea in the spring of 2014 elevates the sea level at the entrance of the Indonesian Seas, which drives the anomalous transport through the Maluku Channel. The results suggest the importance of the western boundary current nonlinearity in driving the transport variability of the Indonesian Throughflow.

Full access
Yu Ren, Haipeng Yu, Chenxi Liu, Yongli He, Jianping Huang, Lixia Zhang, Huancui Hu, Qiang Zhang, Siyu Chen, Xiaoyue Liu, Meng Zhang, Yun Wei, Yaoxian Yan, Weiwei Fan, and Jie Zhou


Central Asia (CA: 35°-55°N, 55°-90°E) has been experiencing a significant warming trend during the past five decades, which has been accompanied by intensified local hydrological changes. Accurate identification of variations in hydroclimatic conditions and understanding the driving mechanisms are of great importance for water resource management. Here, we attempted to quantify dry/wet variations by using precipitation minus evapotranspiration (P–E) and attributed the variations based on the atmosphere and surface water balances. Our results indicated that the dry season became drier while the wet season became wetter in CA for 1982–2019. The land surface water budget revealed precipitation (96.84%) and vapor pressure deficit (2.26%) as the primary contributing factors for the wet season. For the dry season, precipitation (95.43%), net radiation (3.51%), and vapor pressure deficit (−2.64%) were dominant factors. From the perspective of the atmospheric water budget, net inflow moisture flux was enhanced by a rate of 72.85 kg m−1 s−1 in the wet season, which was mainly transported from midwestern Eurasia. The increase in precipitation induced by the external cycle was 11.93 mm/6month. In contrast, the drying trend during the dry season was measured by a decrease in the net inflow moisture flux (74.41 kg m−1 s−1) and reduced external moisture from midwestern Eurasia. An increase in precipitation during the dry season can be attributed to an enhancement in local evapotranspiration, accompanied by a 4.69% increase in the recycling ratio. The compounding enhancements between wet and dry seasons ultimately contribute to an increasing frequency of both droughts and floods.

Restricted access
Xiang Li, Dongliang Yuan, Yao Li, Zheng Wang, Jing Wang, Xiaoyue Hu, Ya Yang, Corry Corvianawatie, Dewi Surinati, Asep Sandra Budiman, Ahmad Bayhaqi, Praditya Avianto, Edi Kusmanto, Priyadi Dwi Santoso, Adi Purwandana, Mochamad Furqon Azis Ismail, Dirhamsyah, and Zainal Arifin


The currents and water mass properties at the Pacific entrance of the Indonesian seas are studied using measurements of three subsurface moorings deployed between the Talaud and Halmahera Islands. The moored current meter data show northeastward mean currents toward the Pacific Ocean in the upper 400 m during the nearly 2-yr mooring period, with the maximum velocity in the northern part of the channel. The mean transport between 60- and 300-m depths is estimated to be 10.1–13.2 Sv (1 Sv ≡ 106 m3 s−1) during 2016–17, when all three moorings have measurements. The variability of the along-channel velocity is dominated by low-frequency signals (periods > 150 days), with northeastward variations in boreal winter and southwestward variations in summer in the superposition of the annual and semiannual harmonics. The current variations evidence the seasonal movement of the Mindanao Current retroflection, which is supported by satellite sea level and ocean color data, showing a cyclonic intrusion into the northern Maluku Sea in boreal winter whereas a leaping path occurs north of the Talaud Islands in summer. During Apri–July, the moored CTDs near 200 m show southwestward currents carrying the salty South Pacific Tropical Water into the Maluku Sea.

Restricted access