Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Xiuji Zhou x
  • All content x
Clear All Modify Search
Yu Liu, Xuepeng Zhao, Weiliang Li, and Xiuji Zhou

Abstract

The Stratospheric Aerosol and Gas Experiment II (SAGE II) aerosol products from 1998 to 2004 have been analyzed for the tendency of changes in background stratospheric aerosol properties. The aerosol extinction coefficient E has apparently increased in the midlatitude lower stratosphere (LS) in both hemispheres, at an annual rate that is as great as 2%–5%. Positive changes in the aerosol surface area density S in the midlatitude LS are most distinct, with a rate of increase that is as high as 5%–6% annually. At the same time, there has been a secular decrease in aerosol effective radius R, especially in the tropical LS, at a rate of up to −2.5% yr−1. Corresponding to these trends, the aerosol number concentration is inferred to have increased by roughly 5%–10% yr−1 in the tropical LS and by 4%–8% yr−1 in the midlatitude LS. Changes in aerosol mass are also deduced, with rates of increase in the midlatitude LS that are in the range of 1%–5% yr−1. The large uncertainty in operational S product is the major factor influencing the trend in S, aerosol number concentrations, and mass. The authors’ global assessment supports the speculation of Hofmann et al. on the basis of local observations that the cause of an increase in lidar backscatter over a similar period was a consequence of aerosol particle growth due to enhanced anthropogenic sulfur dioxide emissions. Moreover, it is found that an increase in the injection rate of condensation nuclei from the troposphere to the stratosphere at tropical latitudes is required to sustain the increase in stratospheric aerosol concentrations identified in this analysis.

Full access
Zhengqiu Zhang, Xiuji Zhou, Weiliang Li, and Michael Sparrow

Abstract

In this paper a scheme is presented for calculating the land surface energy budget based on the first law of thermodynamics. It takes into account the effects of water multiphase changes and hydrologic process. The enthalpy expression for a heterogeneous land surface is deduced, during which latent heats are assumed to be functions of temperature. Also, a solution is derived for calculating ground temperatures during the water phase transition and the hydrologic process. This study results in a more conservative estimate of the ground energy in comparison with many other land surface schemes.

Full access
Ping Zhao, Xiangdong Zhang, Xiuji Zhou, Moto Ikeda, and Yonghong Yin

Abstract

The relationship between extreme anomalies of the spring sea ice extent over the Bering Sea and the Sea of Okhotsk and rainfall variability in the east Asian summer monsoon was examined through an analysis of observed data and modeling experiments. The results show that reduced sea ice extent leads to an enhanced summer monsoon rainfall in southeastern China. This relationship is well supported by the background atmospheric circulation changes and the stationary wave dynamics. A difference in the 500-hPa geopotential height composed from the NCEP–NCAR reanalysis data and model output between the light and heavy sea ice cases shows an anomalous high in the east Asian summer, which favors the invasion of a cold air mass into southern China and prevents the east Asian summer monsoon from advancing northward. Hence, the mei-yu front and its associated rainfall intensify and stay in southeastern China. The generation of the summer anomalous high and its interseasonal link to the spring sea ice extent anomalies can be accounted for by the stationary wave dynamics and the land surface process. In spring, the decrease in sea ice extent forces eastward-propagating wave activity flux and causes an anomalous high in Europe along with a decrease in precipitation. The decreased soil water content results in a higher land surface temperature and more sensible heat flux in summer, and this strengthens summer stationary wave activities in Europe. The eastward propagation of the wave energy and its intensification in east Asia are responsible for the anomalous high in the east Asian summer. In this process, the European land surface acts as a “bridge” linking the spring sea ice extent anomalies with the east Asian summer monsoon.

Full access
Wenjuan Zhang, Yijun Zhang, Dong Zheng, and Xiuji Zhou

Abstract

Cloud-to-ground lightning data and storm intensity data (winds and central pressure) for 33 northwest Pacific tropical cyclones were used to analyze lightning distributions during the period of landfall in China. Lightning activities varied enormously from storm to storm with an average flash rate over 500 km of radius from 3 to 3201 flashes per hour, and no obvious relationship between average intensity and average flash rate occurred. The maximum flash density shifted from the eyewall region (0–60 km) to outer rainbands (180–500 km) as the intensity level increased. The average ratio of flash density in the eyewall to outer rainband was highest (1:0.5) for storms with the level of a tropical storm (17.2–24.4 m s−1) and lowest (1:8.6) for severe typhoons (41.5–50.9 m s−1). After storm landfall, flash density in the rainband decreased more rapidly in severe typhoons than in severe tropical storms (24.5–32.6 m s−1) and typhoons, but increased in tropical depressions (10.8–17.1 m s−1) and tropical storms. With the strength of intensity level, lightning in the outer rainband gradually weakened after the storm landfall.

Lightning outbreaks were identified in a consistent manner for all tropical cyclones to inspect the relationship of eyewall flashes to the changes of structure and intensity. Eyewall flash outbreaks were found during the period of intensity change (15% of outbreaks in intensification and 43% in weaken), and the period of maximum intensity (15% of outbreaks) of storms. A new result of this analysis found that 10% of the outbreaks occurred prior to and during periods of storm turning, which is potentially important for the trajectory change forecasting of tropical cyclones.

Full access
Feng Zhang, Zhongping Shen, Jiangnan Li, Xiuji Zhou, and Leiming Ma

Abstract

Although single-layer solutions have been obtained for the δ-four-stream discrete ordinates method (DOM) in radiative transfer, a four-stream doubling–adding method (4DA) is lacking, which enables us to calculate the radiative transfer through a vertically inhomogeneous atmosphere with multiple layers. In this work, based on the Chandrasekhar invariance principle, an analytical method of δ-4DA is proposed.

When applying δ-4DA to an idealized medium with specified optical properties, the reflection, transmission, and absorption are the same if the medium is treated as either a single layer or dividing it into multiple layers. This indicates that δ-4DA is able to solve the multilayer connection properly in a radiative transfer process. In addition, the δ-4DA method has been systematically compared with the δ-two-stream doubling–adding method (δ-2DA) in the solar spectrum. For a realistic atmospheric profile with gaseous transmission considered, it is found that the accuracy of δ-4DA is superior to that of δ-2DA in most of cases, especially for the cloudy sky. The relative errors of δ-4DA are generally less than 1% in both the heating rate and flux, while the relative errors of δ-2DA can be as high as 6%.

Full access
Junming Chen, Ping Zhao, Song Yang, Ge Liu, and Xiuji Zhou

Abstract

The Asian–Pacific Oscillation (APO) is a dominant teleconnection pattern linking the climate anomalies over Asia, the North Pacific, and other regions including North America. The National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) successfully simulates many summer-mean features of the upper-tropospheric temperature, the South Asian high, the westerly and easterly jet streams, and the regional monsoons over Asia and Africa. It also well simulates the interannual variability of the APO and associated anomalies in atmospheric circulation, precipitation, surface air temperature (SAT), and sea surface temperature (SST). Associated with a positive APO are a strengthened South Asian high; a weakened extratropical upper-tropospheric westerly jet stream over North America; strengthened subtropical anticyclones over the Northern Hemisphere oceans; and strengthened monsoons over North Africa, India, and East Asia. Meanwhile, increased precipitation is found over tropical North Africa, South Asia, northern China, and tropical South America; decreased precipitation is seen over subtropical North Africa, the Middle East, central Asia, southern China, Japan, and extratropical North America. Low SAT occurs in North Africa, India, and tropical South America and high SAT appears in extratropical Eurasia and North America. SST increases in the extratropical Pacific and the North Atlantic but decreases in the tropical Pacific. The summer APO and many of the associated climate anomalies can be predicted by the NCEP CFSv2 by up to 5 months in advance. However, the CFSv2 skill of predicting the SAT in the East Asian monsoon region is low.

Full access
Xiangde Xu, Lian Xie, Xinghong Cheng, Jianming Xu, Xiuji Zhou, and Guoan Ding

Abstract

A major challenge for air quality forecasters is to reduce the uncertainty of air pollution emission inventory. Error in the emission data is a primary source of error in air quality forecasts, much like the effect of error in the initial conditions on the accuracy of weather forecasting. Data assimilation has been widely used to improve weather forecasting by correcting the initial conditions with weather observations. In a similar way, observed concentrations of air pollutants can be used to correct the errors in the emission data. In this study, a new method is developed for estimating air pollution emissions based on a Newtonian relaxation and nudging technique. Case studies for the period of 1–25 August 2006 in 47 cities in China indicate that the nudging technique resulted in improved estimations of sulfur dioxide (SO2) and nitrogen dioxide (NO2) emissions in the majority of these cities. Predictions of SO2 and NO2 concentrations in January, April, August, and October using the emission estimations derived from the nudging technique showed remarkable improvements over those based on the original emission data.

Full access
Ping Zhao, Xiangde Xu, Fei Chen, Xueliang Guo, Xiangdong Zheng, Liping Liu, Yang Hong, Yueqing Li, Zuo La, Hao Peng, Linzhi Zhong, Yaoming Ma, Shihao Tang, Yimin Liu, Huizhi Liu, Yaohui Li, Qiang Zhang, Zeyong Hu, Jihua Sun, Shengjun Zhang, Lixin Dong, Hezhen Zhang, Yang Zhao, Xiaolu Yan, An Xiao, Wei Wan, Yu Liu, Junming Chen, Ge Liu, Yangzong Zhaxi, and Xiuji Zhou

Abstract

This paper presents the background, scientific objectives, experimental design, and preliminary achievements of the Third Tibetan Plateau (TP) Atmospheric Scientific Experiment (TIPEX-III) for 8–10 years. It began in 2013 and has expanded plateau-scale observation networks by adding observation stations in data-scarce areas; executed integrated observation missions for the land surface, planetary boundary layer, cloud–precipitation, and troposphere–stratosphere exchange processes by coordinating ground-based, air-based, and satellite facilities; and achieved noticeable progress in data applications. A new estimation gives a smaller bulk transfer coefficient of surface sensible heat over the TP, which results in a reduction of the possibly overestimated heat intensity found in previous studies. Summer cloud–precipitation microphysical characteristics and cloud radiative effects over the TP are distinguished from those over the downstream plains. Warm rain processes play important roles in the development of cloud and precipitation over the TP. The lower-tropospheric ozone maximum over the northeastern TP is attributed to the regional photochemistry and long-range ozone transports, and the heterogeneous chemical processes of depleting ozone near the tropopause might not be a dominant mechanism for the summer upper-tropospheric–lower-stratospheric ozone valley over the southeastern TP. The TP thermodynamic function not only affects the local atmospheric water maintenance and the downstream precipitation and haze events but also modifies extratropical atmospheric teleconnections like the Asia–Pacific Oscillation, subtropical anticyclones over the North Pacific and Atlantic, and temperature and precipitation over Africa, Asia, and North America. These findings provide new insights into understanding land–atmosphere coupled processes over the TP and their effects, improving model parameterization schemes, and enhancing weather and climate forecast skills.

Open access